Vahid Rezania

  • Citations Per Year
Learn More
We propose a stochastic model that accounts for the growth, catastrophe and rescue processes of steady-state microtubules assembled from MAP-free tubulin in the possible presence of a microtubule-associated drug. As an example of the latter, we both experimentally and theoretically study the perturbation of microtubule dynamic instability by S-methyl-D-DM1,(More)
Numerous isotypes of the structural protein tubulin have now been characterized in various organisms and their expression offers a plausible explanation for observed differences affecting microtubule function in vivo. While this is an attractive hypothesis, there are only a handful of studies demonstrating a direct influence of tubulin isotype composition(More)
Microtubules are a major component of the cytoskeleton distinguished by highly dynamic behavior both in vitro and in vivo referred to as dynamic instability. We propose a general mathematical model that accounts for the growth, catastrophe, rescue, and nucleation processes in the polymerization of microtubules from tubulin dimers. Our model is an extension(More)
We develop a physiologically-based lattice model for the transport and metabolism of drugs in the functional unit of the liver, called the lobule. In contrast to earlier studies, we have emphasized the dominant role of convection in well-vascularized tissue with a given structure. Estimates of convective, diffusive and reaction contributions are given. We(More)
It has been suggested that microtubules and other cytoskeletal filaments may act as electrical transmission lines. An electrical circuit model of the microtubule is constructed incorporating features of its cylindrical structure with nanopores in its walls. This model is used to study how ionic conductance along the lumen is affected by flux through the(More)
We extend a physiologically-based lattice model for the transport and metabolism of drugs in the liver lobule (liver functional unit) to consider structural and spatial variability. We compare predicted drug concentration levels observed exiting the lobule with their detailed distribution inside the lobule, and indicate the role that structural variation(More)
Surviving in a diverse environment requires corresponding organism responses. At the cellular level, such adjustment relies on the transcription factors (TFs) which must rapidly find their target sequences amidst a vast amount of non-relevant sequences on DNA molecules. Whether these transcription factors locate their target sites through a 1D or 3D pathway(More)
It has been suggested that quantum coherence in the selectivity filter of ion channel may play a key role in fast conduction and selectivity of ions. However, it has not been clearly elucidated yet why classical coherence is not sufficient for this purpose. In this paper, we investigate the classical vibrational coherence between carbonyl groups(More)
In this paper we propose a microscopic model to study the polymerization of microtubules (MTs). Starting from fundamental reactions during MT’s assembly and disassembly processes, we systematically derive a nonlinear system of equations that determines the dynamics of microtubules in 3D. We found that the dynamics of a MT is mathematically expressed via a(More)
Microtubules (MTs) are intra-cellular cylindrical protein filaments. They exhibit a unique phenomenon of stochastic growth and shrinkage, called dynamic instability. In this paper, we introduce a theoretical framework for applying Compressive Sensing (CS) to the sampled data of the microtubule length in the process of dynamic instability. To reduce data(More)