Vahid Joekar-Niasar

Learn More
[1] Several models for two-phase flow in porous media identify trapping and connectivity of fluids as an important contribution to macroscale hysteresis. This is especially true for hysteresis in relative permeabilities. The trapping models propose trajectories from the initial saturation to the end saturation in various ways and are often based on(More)
Using a visualization setup, we characterized the solute transport in a micromodel filled with two fluid phases using direct, real-time imaging. By processing the time series of images of solute transport (dispersion) in a two fluid-phase filled micromodel, we directly delineated the change of transport hydrodynamics as a result of fluid-phase occupancy. We(More)
In the last few decades, micro-models have become popular experimental tools for two-phase flow studies. In this work, the design and fabrication of an innovative, elongated, glass-etched micro-model with dimensions of 5 × 35 mm(2) and constant depth of 43 microns is described. This is the first time that a micro-model with such depth and dimensions has(More)
  • 1