Vahid Joekar-Niasar

Learn More
In the last few decades, micro-models have become popular experimental tools for two-phase flow studies. In this work, the design and fabrication of an innovative, elongated, glass-etched micro-model with dimensions of 5 × 35 mm(2) and constant depth of 43 microns is described. This is the first time that a micro-model with such depth and dimensions has(More)
Entry capillary pressure is one of the most important factors controlling drainage and remobilization of the capillary-trapped phases as it is the limiting factor against the two-phase displacement. It is known that the entry capillary pressure is rate dependent such that the inertia forces would enhance entry of the non-wetting phase into the pores. More(More)
[1] Several models for two-phase flow in porous media identify trapping and connectivity of fluids as an important contribution to macroscale hysteresis. This is especially true for hysteresis in relative permeabilities. The trapping models propose trajectories from the initial saturation to the end saturation in various ways and are often based on(More)
Multiphase flow in porous media is important in a number of environmental and industrial applications such as soil remediation, CO2 sequestration, and enhanced oil recovery. Wetting properties control flow of immiscible fluids in porous media and fluids distribution in the pore space. In contrast to the strong and weak wet conditions, pore-scale physics of(More)
Using a visualization setup, we characterized the solute transport in a micromodel filled with two fluid phases using direct, real-time imaging. By processing the time series of images of solute transport (dispersion) in a two fluid-phase filled micromodel, we directly delineated the change of transport hydrodynamics as a result of fluid-phase occupancy. We(More)
There are abundant examples of natural, engineering and industrial applications, in which "solute transport" and "mixing" in porous media occur under multiphase flow conditions. Current state-of-the-art understanding and modelling of such processes are established based on flawed and non-representative models. Moreover, there is no direct experimental(More)
  • 1