Vadim V. Yanshole

Learn More
Quantitative metabolomic profiles of normal and cataractous human lenses were obtained with the combined use of high-frequency nuclear magnetic resonance (NMR) and high-performance liquid chromatography with high-resolution mass-spectrometric detection (LC-MS) methods. The concentration of more than fifty metabolites in the lens cortex and nucleus has been(More)
Spatial distribution of 34 metabolites along the optical and equatorial axes of the human lens has been determined. For the majority of metabolites, the homogeneous distribution has been observed. That suggests that the rate of the metabolite transformation in the lens is low due to the general metabolic passivity of the lens fiber cells. However, the redox(More)
The photophysics and photochemistry of kynurenine (KN) covalently bound to the amino acids lysine, cysteine, and histidine, the antioxidant glutathione, and the protein lysozyme have been studied by optical spectroscopy with femto- and nanosecond time resolution. The fluorescence quantum yield of the adducts of KN to amino acids is approximately 2 times(More)
PURPOSE To determine age-related changes in the composition of the urea-soluble (US) protein fraction from lenses of senescence-accelerated OXYS (cataract model) and Wistar (control) rats and to establish posttranslational modifications (PTMs) occurring under enhanced oxidative stress in OXYS lenses. METHODS The identity and the relative abundance of(More)
This work is the first comprehensive report on the quantitative metabolomic composition of the rat lens. Quantitative metabolomic profiles of lenses were acquired with the combined use of high-frequency nuclear magnetic resonance (NMR) and high-performance liquid chromatography with high-resolution mass-spectrometric detection (LC-MS) methods. More than(More)
The reactions of photoexcited kynurenic acid (KNA) with bovine α-crystallins under anaerobic conditions proceed via the electron transfer from tryptophan (Trp) and tyrosine (Tyr) residues to the triplet KNA molecules. The subsequent radical reactions lead to the protein aggregation and insolubilization. The absorption of the photolyzed proteins at 335 nm as(More)
The analysis of post-mortem metabolomic changes in biological fluids opens the way to develop new methods for the estimation of post-mortem interval (PMI). It may also help in the analysis of disease-induced metabolomic changes in human tissues when the postoperational samples are compared to the post-mortem samples from healthy donors. The goals of this(More)
Cornea is the outermost part of the eye supplied mostly by aqueous humor (AH). Therefore, the comparison of the metabolomic compositions of AH and cornea may help to determine which compounds are produced inside the cornea, and which penetrate into cornea from AH for intra-corneal consumption. Keratoconus (KC) is the most common form of the cornea(More)
Due to ability of stable nitroxides to interact with free radicals, they are used as antioxidants for therapeutic and research goals in biology and medicine. A modern trend in medical chemistry is the design of multifunctional molecules such as UV absorbers covalently bound to nitroxides, which provides both UV protection and antioxidant properties combined(More)
The optical elements of the eye—cornea, lens, and vitreous humor—are avascular tissues, and their nutrition and waste removal are provided by aqueous humor (AH). The AH production occurs through the active secretion and the passive diffusion/ultrafiltration of blood plasma. The comparison of the metabolomic profiles of AH and plasma is important for(More)