Vadim Moskvin

Learn More
Dose to the total body from induced radiation resulting from primary exposure to radiotherapeutic beams is not detailed in routine treatment planning though this information is potentially important for better estimates of health risks including secondary cancers. This information can also allow better management of patient treatment logistics, suggesting(More)
The Monte Carlo code PENELOPE has been used to simulate photon flux from the Leksell Gamma Knife, a precision method for treating intracranial lesions. Radiation from a single 6OCo assembly traversing the collimator system was simulated, and phase space distributions at the output surface of the helmet for photons and electrons were calculated. The(More)
The absence of electronic equilibrium in the vicinity of bone-tissue or air-tissue heterogeneity in the head can misrepresent deposited dose with treatment planning algorithms that assume all treatment volume as homogeneous media. In this paper, Monte Carlo simulation (PENELOPE) and measurements with a specially designed heterogeneous phantom were applied(More)
High-energy electron beams in the range 150-250 MeV are studied to evaluate the feasibility for radiotherapy. Monte Carlo simulation results from the PENELOPE code are presented and used to determine lateral spread and penetration of these beams. It is shown that the penumbra is comparable to photon beams at depths less than 10 cm and the practical range(More)
Exposure of cells to any form of ionizing radiation (IR) is expected to induce a variety of DNA lesions, including double strand breaks (DSBs), single strand breaks (SSBs) and oxidized bases, as well as loss of bases, i.e., abasic sites. The damaging potential of IR is primarily related to the generation of electrons, which through their interaction with(More)
Radiation oncology is a technologically advanced health care specialty in which numerous innovations, such as intensity-modulated radiation therapy (IMRT), require significant manpower and resources. For 3 main disease sites (prostate, head and neck, and lung), the authors investigated IMRT planning time across the United States among commonly used(More)
This work evaluates the potential of very high energy (50-250 MeV) electron beams for dose conformation and identifies those variables that influence optimized dose distributions for this modality. Intensity-modulated plans for a prostate cancer model were optimized as a function of the importance factors, beam energy and number of energy bins, number of(More)
The purpose of this study was to devise a simple semi-empirical model to estimate the range shift in clinical practices with high-Z inhomogeneity in proton beam. A semi-empirical model utilizing the logarithmic dependence on Z in stopping power from Bohr's classical approach has been developed to calculate the range shift due to the presence of(More)
PURPOSE Underdosage in the human larynx may be the true factor behind the decrease in local control rates. PATIENTS AND METHODS To evaluate underdosage with Monte Carlo a CT-based geometrical model of the patient's neck (mathematical neck) was created. Dose was calculated for a pair of 6 Me V parallel-opposed photon beams modulated with 15 degree steel(More)
For most basic radiobiological research applications involving irradiation of small animals, it is difficult to achieve the same high precision dose distribution realized with human radiotherapy. The precision for irradiations performed with standard radiotherapy equipment is +/-2 mm in each dimension, and is adequate for most human treatment applications.(More)