Vadim Ksenofontov

Learn More
Iron reduction in subseafloor sulfate-depleted and methane-rich marine sediments is currently a subject of interest in subsurface geomicrobiology. While iron reduction and microorganisms involved have been well studied in marine surface sediments, little is known about microorganisms responsible for iron reduction in deep methanic sediments. Here, we used(More)
A superconductor is a material that can conduct electricity without resistance below a superconducting transition temperature, Tc. The highest Tc that has been achieved to date is in the copper oxide system: 133 kelvin at ambient pressure and 164 kelvin at high pressures. As the nature of superconductivity in these materials is still not fully understood(More)
The discovery of new high-temperature superconductors based on FeAs has led to a new 'gold rush' in high-T(C) superconductivity. All of the new superconductors share the same common structural motif of FeAs layers and reach T(C) values up to 55 K (ref. 2). Recently, superconductivity has been reported in FeSe (ref. 3), which has the same iron pnictide layer(More)
In this Communication, we report the synthesis and characterization of novel Hofmann-like spin-crossover porous coordination polymers of composition {Fe(L)[M(CN)(4)]}·G [L = 1,4-bis(4-pyridylethynyl)benzene and M(II) = Ni, Pd, and Pt]. The spin-crossover properties of the framework are closely related to the number and nature of the guest molecules included(More)
In this Letter we show that superconducting Fe(1.01)Se undergoes a structural transition at 90 K from a tetragonal to an orthorhombic phase but that nonsuperconducting Fe(1.03)Se does not. High resolution electron microscopy at low temperatures further reveals an unexpected additional modulation of the crystal structure of the superconducting phase that(More)
The semiconductor Sr2FeOsO6, depending on temperature, adopts two types of spin structures that differ in the spin sequence of ferrimagnetic iron-osmium layers along the tetragonal c axis. Neutron powder diffraction experiments, 57Fe Mössbauer spectra, and density functional theory calculations suggest that this behavior arises because a lattice instability(More)
[Fe(NH2trz)3]SnF6n x H2O (NH(2)trz=4-amino-1,2,4-triazole; n=1 (1), n=0.5 (2)) are new 1D spin-crossover coordination polymers. Compound 2 exhibits an incomplete spin transition centred at around 210 K with a thermal hysteresis loop approximately 16 K wide. The spin transition of 2 was detected by the Mössbauer resonance of the 119Sn atom in the SnF6 (2-)(More)
Hierarchical self-assembly of complex supramolecular architectures allows for the emergence of novel properties at each level of complexity. The reaction of the ligand components A and B with Fe(II) cations generates the [2x2] grid-type functional building modules 1 and 2, presenting spin-transition properties and preorganizing an array of coordination(More)