Learn More
We report observation of a fine structure component in backscattered light from mucosal tissue which is periodic in wavelength. This structure is ordinarily masked by a diffusive background. We have identified the origin of this component as being due to light which is Mie scattered by surface epithelial cell nuclei. By analyzing the amplitude and frequency(More)
Recently, there has been a major thrust to understand biological processes at the nanoscale. Optical microscopy has been exceedingly useful in imaging cell microarchitecture. Characterization of cell organization at the nanoscale, however, has been stymied by the lack of practical means of cell analysis at these small scales. To address this need, we(More)
Light scattered from biological tissues can exhibit an inverse power law spectral component. We develop a model based on the Born approximation and von Karman (self-affine) spatial correlation of submicron tissue refractive index to account for this. The model is applied to light scattering spectra obtained from excised esophagi of normal and(More)
We determine the relationship between the depolarization properties of inhomogeneous particles and the statistical parameters of their internal refractive-index distributions. Our analysis demonstrates that the linear depolarization ratio of backscattered light by an inhomogeneous particle is approximately proportional to both the squared standard deviation(More)
BACKGROUND & AIMS Identification of preneoplastic changes in histologically normal epithelium (the "field effect") could provide a powerful screening tool for colorectal cancer. However, to date, reliable detection has not been possible. We have recently developed a new generation of optical technology, 4-dimensional elastic light-scattering fingerprinting(More)
Biomedical imaging with light-scattering spectroscopy (LSS) is a novel optical technology developed to probe the structure of living epithelial cells in situ without need for tissue removal. LSS makes it possible to distinguish between single backscattering from epithelial-cell nuclei and multiply scattered light. The spectrum of the single backscattering(More)
To investigate the transition from non-cancerous to metastatic from a physical sciences perspective, the Physical Sciences-Oncology Centers (PS-OC) Network performed molecular and biophysical comparative studies of the non-tumorigenic MCF-10A and metastatic MDA-MB-231 breast epithelial cell lines, commonly used as models of cancer metastasis. Experiments(More)
A three-parameter model based on the Whittle-Matérn correlation family is used to describe continuous random refractive-index fluctuations. The differential scattering cross section is derived from the index correlation function using nonscalar scattering formulas within the Born approximation. Parameters such as scattering coefficient, anisotropy factor,(More)
Optical contrast based on elastic scattering interactions between light and matter can be used to probe cellular structure, cellular dynamics, and image tissue architecture. The quantitative nature and high sensitivity of light scattering signals to subtle alterations in tissue morphology, as well as the ability to visualize unstained tissue in vivo, has(More)