Learn More
Disruption of the presynaptically enriched polyphosphoinositide phosphatase synaptojanin 1 leads to an increase of clathrin-coated intermediates and of polymerized actin at endocytic zones of nerve terminals. These changes correlate with elevated levels of PI(4,5)P(2) in neurons. We report that phosphatidylinositol phosphate kinase type Igamma (PIPKIgamma),(More)
We have resolved a central and long-standing paradox in understanding the amplification of rod phototransduction by making direct measurements of the gains of the underlying enzymatic amplifiers. We find that under optimized conditions a single photoisomerized rhodopsin activates transducin molecules and phosphodiesterase (PDE) catalytic subunits at rates(More)
Recoverin is a 23-kDa Ca(2+)-binding protein found predominantly in vertebrate photoreceptor cells. Recent electrophysiological and biochemical studies suggest that recoverin may regulate the photoresponse by inhibiting rhodopsin phosphorylation. We find in both cell homogenates and reconstituted systems that the inhibition of rhodopsin phosphorylation by(More)
CAPS-1 is required for Ca2+-triggered fusion of dense-core vesicles with the plasma membrane, but its site of action and mechanism are unknown. We analyzed the kinetics of Ca2+-triggered exocytosis reconstituted in permeable PC12 cells. CAPS-1 increased the initial rate of Ca2+-triggered vesicle exocytosis by acting at a rate-limiting, Ca2+-dependent(More)
Ca2+-dependent activator protein for secretion (CAPS) is a cytosolic protein essential for the Ca2+-dependent fusion of dense-core vesicles (DCVs) with the plasma membrane and the regulated secretion of a subset of neurotransmitters. The mechanism by which CAPS functions in exocytosis and the means by which it associates with target membranes are unknown.(More)
A current major challenge in the study of regulated exocytosis is the identification of essential proteins that mediate the transit of secretory vesicles through trafficking stages such as recruitment, docking, and fusion. Defining the physiological roles and mechanisms of action of these essential proteins is paramount. The reconstitution of stages of(More)
Membrane contact established by tethering or docking mechanisms is not a sufficient condition for membrane fusion. In neural and neuroendocrine cells, only a small fraction of secretory vesicles docked at the plasma membrane are fusion-competent and undergo rapid ATP-independent fusion in response to Ca(2+) elevations. Additional biochemical events termed(More)
Marine macrolide toxins of trisoxazole family target actin with high affinity and specificity and have promising pharmacological properties. We present X-ray structures of actin in complex with two members of this family, kabiramide C and jaspisamide A, at a resolution of 1.45 and 1.6 A, respectively. The structures reveal the absolute stereochemistry of(More)
We describe the construction and use of two sets of vectors for the over-expression and purification of protein from Escherichia coli. The set of pTEV plasmids (pTEV3, 4, 5) directs the synthesis of a recombinant protein with a N-terminal hexahistidine (His(6)) tag that is removable by the tobacco etch virus (TEV) protease. The set of pKLD plasmids (pKLD66,(More)
All actin crystal structures reported to date represent actin complexed or chemically modified with molecules that prevent its polymerization. Actin cleaved with ECP32 protease at a single site between Gly42 and Val43 is virtually non-polymerizable in the Ca-ATP bound form but remains polymerization-competent in the Mg-bound form. Here, a crystal structure(More)