Learn More
For murine adenosine deaminase, we have determined that a single zinc or cobalt cofactor bound in a high affinity site is required for catalytic function while metal ions bound at an additional site(s) inhibit the enzyme. A catalytically inactive apoenzyme of murine adenosine deaminase was produced by dialysis in the presence of specific zinc chelators in(More)
In Gram-negative bacteria, TEM-1 beta-lactamase provides the major mechanism of plasmid-mediated beta-lactam resistance. Natural variants of TEM-1 with increased antibiotic resistance have appeared in response to the use of extended-spectrum beta-lactam antibiotics (e.g., ceftazidime) and beta-lactamase inhibitors (e.g., clavulanic acid). Some of the(More)
Protein disulfide isomerase (PDI), a folding catalyst and chaperone can, under certain conditions, facilitate the misfolding and aggregation of its substrates. This behavior, termed antichaperone activity [Puig, A., and Gilbert, H. F., (1994) J. Biol. Chem. 269, 25889] may provide a common mechanism for aggregate formation in the cell, both as a normal(More)
Two adjacent aspartates, Asp 295 and Asp 296, playing major roles in the reaction catalyzed by mouse adenosine deaminase (mADA) were altered using site-directed mutagenesis. These mutants were expressed and purified from an ADA-deficient bacterial strain and characterized. Circular dichroism spectroscopy shows the mutants to have unperturbed secondary(More)
His 238, a conserved amino acid located in hydrogen-bonding distance from C-6 of the substrate in the active site of murine adenosine deaminase (mADA) and postulated to play an important role in catalysis, was altered into an alanine, a glutamate, and an arginine using site-directed mutagenesis. The Ala and Glu substitutions did not result in changes of the(More)
Basement membranes are specialized extracellular matrices that surround certain cell types (muscle cells, adipose cells, etc) and are present under the basal surface of cells exhibiting polarity (epithelial, endothelial and mesothelial cells). They have a unique macromolecular composition, consisting mainly of type IV collagen isoforms, laminin isoforms,(More)
  • 1