V Schweikhard

Learn More
We create rapidly rotating Bose-Einstein condensates in the lowest Landau level by spinning up the condensates to rotation rates Omega > 99% of the centrifugal limit for a harmonically trapped gas, while reducing the number of atoms. As a consequence, the chemical potential drops below the cyclotron energy 2 variant Planck's over 2pi Omega. While in this(More)
We observe interlaced square vortex lattices in rotating dilute-gas spinor Bose-Einstein condensates (BEC). After preparing a hexagonal vortex lattice in a one-component BEC in an internal atomic state |1, we coherently transfer a fraction of the superfluid to a different state |2. The subsequent evolution of this pseudo-spin-1/2 superfluid towards a state(More)
We directly image Tkachenko waves in a vortex lattice in a dilute-gas Bose-Einstein condensate. The low (sub-Hz) resonant frequencies are a consequence of the small but nonvanishing elastic shear modulus of the vortex-filled superfluid. The frequencies are measured for rotation rates as high as 98% of the centrifugal limit for the harmonically confined gas.(More)
We report the observation of vortex pinning in rotating gaseous Bose-Einstein condensates. Vortices are pinned to columnar pinning sites created by a corotating optical lattice superimposed on the rotating Bose-Einstein condensates. We study the effects of two types of optical lattice: triangular and square. In both geometries we see an orientation locking(More)
We study the formation of large vortex aggregates in a rapidly rotating dilute-gas Bose-Einstein condensate. When we remove atoms from the rotating condensate with a tightly focused, resonant laser, the density can be locally suppressed, while fast circulation of a ring-shaped superflow around the area of suppressed density is maintained. Thus a giant(More)
We observe the proliferation of vortices in the Berezinskii-Kosterlitz-Thouless regime on a two-dimensional array of Josephson-coupled Bose-Einstein condensates. As long as the Josephson (tunneling) energy J exceeds the thermal energy T, the array is vortex free. With decreasing J/T, vortices appear in the system in ever greater numbers. We confirm thermal(More)
A Bose-Einstein condensate (BEC) is a quantum fluid that gives rise to interesting shock wave nonlinear dynamics. Experiments depict a BEC that exhibits behavior similar to that of a shock wave in a compressible gas, eg. traveling fronts with steep gradients. However, the governing Gross-Pitaevskii (GP) equation that describes the mean field of a BEC admits(More)
The Time and Frequency Division of the National Institute of Standards and Technology (NIST) is developing a miniature laser-cooled Cs-fountain frequency standard. We anticipate that this device will be useful as a transportable reference for comparison of frequency standards at other laboratories. Additionally, it could be useful for measuring the(More)
  • 1