Learn More
We attempted to elicit automatic stepping in healthy humans using appropriate afferent stimulation. It was found that continuous leg muscle vibration produced rhythmic locomotor-like stepping movements of the suspended leg, persisting up to the end of stimulation and sometimes outlasting it by a few cycles. Air-stepping elicited by vibration did not differ(More)
The representation of joint position at rest and during movement was investigated in 44 muscle spindle primary afferents originating from the extensor carpi radialis brevis (ECRb) and extensor digitorum (ED) of normal human subjects. Position sensitivity was estimated for each afferent, and 43 of 44 were position sensitive. In each trial, six sequential(More)
1. When interacting with the environment, human arm movements may be prevented in certain directions (i.e., when sliding the hand along a surface) resulting in what is called a "constrained motion." In the directions that the movement is restricted, the subject is instead free to control the forces against the constraint. 2. Control strategies for(More)
Air-stepping can be used as a model for investigating rhythmogenesis and its interaction with sensory input. Here we show that it is possible to entrain involuntary rhythmic movement patterns in healthy humans by using different kinds of stimulation techniques. The subjects lay on their sides with one or both legs suspended, allowing low-friction horizontal(More)
This study evaluated the extent to which movement of the lower limbs and pelvis may compensate for the disturbance to posture that results from respiratory movement of the thorax and abdomen. Motion of the neck, pelvis, leg and centre of pressure (COP) were recorded with high resolution in conjunction with electromyographic activity (EMG) of flexor and(More)
A cardinal feature of Parkinson's disease (PD) is muscle hypertonicity, i.e. rigidity. Little is known about the axial tone in PD or the relation of hypertonia to functional impairment. We quantified axial rigidity to assess its relation to motor symptoms as measured by UPDRS and determine whether rigidity is affected by levodopa treatment. Axial rigidity(More)
1. Previous studies have used tendon vibration to investigate kinesthetic illusions in the isometric limb and end point control in the moving limb. These previous studies have shown that vibration distorts the perceptions of static joint angle and movement and causes systematic errors in the end point of movement. In this paper we describe the effects of(More)
Integration of sensory and motor inputs has been shown to be impaired in appendicular muscles and joints of Parkinson's disease (PD) patients. As PD advances, axial symptoms such as gait and balance impairments appear, which often progresses to complete inability stand or walk unaided. The current study evaluates kinesthesia in the axial musculature of PD(More)
Across the entire human body, postural tone might play its most critical role in the body's axis because the axis joins the four limbs and head into a single functioning unit during complex motor tasks as well as in static postures. Although postural tone is commonly viewed as low-level, tonic motor activity, we hypothesized that postural tone is both(More)
Experiments carried out on 14 human subjects showed that long-lasting involuntary tonic motor responses occurred after the offset of muscle vibration (70 Hz, 0.5 mm, duration 30 s). These post-vibratory biceps and triceps brachii motor responses were compared with the motor responses observed in the same subjects after performing an isometric contraction of(More)