V K Vaddella

Learn More
The objective of this experiment was to investigate the effect of level of dietary concentrate on rumen fermentation, digestibility, and N losses in lactating dairy cows. The experiment was a replicated 3x3 Latin square design with 6 cows and 16-d adaptation periods. Ruminal contents were exchanged between cows at the beginning of each adaptation period.(More)
This experiment investigated the effect of dietary crude protein (CP) and ruminally degraded protein (RDP) levels on rumen fermentation, digestibility, ammonia emission from manure, and performance of lactating dairy cows. The experiment was a replicated 3 x 3 Latin square design with 6 cows. Three diets varying in CP concentration were tested (CP, % of dry(More)
This experiment (replicated 3 x 3 Latin square design) was conducted to investigate the effects of lauric acid (LA) or coconut oil (CO) on ruminal fermentation, nutrient digestibility, ammonia losses from manure, and milk fatty acid (FA) composition in lactating cows. Treatments consisted of intraruminal doses of 240 g of stearic acid/d (SA; control), 240 g(More)
Strong acid solutions have been widely used in acid traps to determine concentrations of ammonia in ambient air or exhaust air stream. A literature survey indicates the method has a long history and a wide variation in use. Through a series of studies, this paper examines several factors including volume of the acid, depth of the acid, and airflow rate;(More)
About 80% of dairy cattle N intake is excreted in urine and feces. Urinary-N is about 75% urea, whereas fecal-N is mostly organic. Urinary-N (urea) can only be volatilized when it is hydrolyzed to ammonia (NH3) in a process catalyzed by urease, which is predominantly found in feces. Minimizing contact between urine and feces may be an effective approach to(More)
  • 1