V. K. Michalis

Learn More
The direct phase coexistence method is used for the determination of the three-phase coexistence line of sI methane hydrates. Molecular dynamics (MD) simulations are carried out in the isothermal-isobaric ensemble in order to determine the coexistence temperature (T3) at four different pressures, namely, 40, 100, 400, and 600 bar. Methane bubble formation(More)
The direct phase coexistence methodology was used to predict the three-phase equilibrium conditions of carbon dioxide hydrates. Molecular dynamics simulations were performed in the isobaric-isothermal ensemble for the determination of the three-phase coexistence temperature (T3) of the carbon dioxide-water system, at pressures in the range of 200-5000 bar.(More)
The problem of hydrodynamic dispersion in porous media is considered and numerical predictions of the mixing degree in a single intersection are provided. The flow field in the intersection and adjacent pores or fractures is calculated using a lattice Boltzmann model for single phase flow. A particle-tracking scheme is used, subsequently, that monitors the(More)
Molecular dynamics simulation is used to predict the phase equilibrium conditions of a ternary hydrate system. In particular, the direct phase coexistence methodology is implemented for the determination of the three-phase coexistence temperature of the methane-carbon dioxide-water hydrate system at elevated pressures. The TIP4P/ice, TraPPE-UA and OPLS-UA(More)
We introduce a simple correction to the calculation of the lattice constants of fully occupied structure sI methane or carbon dioxide pure hydrates that are obtained from classical molecular dynamics simulations using the TIP4PQ/2005 water force field. The obtained corrected lattice constants are subsequently used in order to obtain isobaric thermal(More)
  • 1