Learn More
Increasing evidences point to G protein-coupled receptor kinases (GRKs), a subfamily of protein kinase A/G/C-like kinases, as relevant players in cancer progression, in a cell-type and tumor-specific way. Alterations in the expression and/or activity of particular GRKs have been identified in several types of tumors, and demonstrated to modulate the(More)
Human melanoma mortality is associated with the growth of metastasis in selected organs including the lungs, liver, and brain. In this study, we examined the consequences of overexpression of pigment epithelium-derived factor (PEDF), a neurotrophic factor and potent angiogenesis inhibitor, on both melanoma primary tumor growth and metastasis development.(More)
Plasma cells (PC) are B-lymphocytes terminally differentiated in a postmitotic state, with the unique purpose of manufacturing and exporting Igs. Despite the importance of this process in the survival of vertebrates, no studies have been made to understand the molecular events that regulate Ig exocytosis by PC. The present study explores the possible(More)
This paper presents a SIMULINK block set for the behavioral modeling and high-level simulation of RF receiver frontends. The toolbox includes a library with the main RF circuit models that are needed to implement wireless receivers, namely: low noise amplifiers, mixers, oscillators, filters and programmable gain amplifiers. There is also a library including(More)
Tumor vessel dysfunction is a pivotal event in cancer progression. Using an in vivo neovascularization model, we identified G protein-coupled receptor kinase 2 (GRK2) as a key angiogenesis regulator. An impaired angiogenic response involving immature vessels was observed in mice hemizygous for Grk2 or in animals with endothelium-specific Grk2 silencing. ECs(More)
Cell cycle progression requires changes in the activity or levels of a variety of key signaling proteins. G protein-coupled receptor kinase 2 (GRK2) plays a central role in G protein-coupled receptor regulation. Recent research is uncovering its involvement in additional cellular functions, but the potential role of GRK2 in the cell cycle has not been(More)
G protein-coupled receptor kinase 2 (GRK2) is a key modulator of G protein-coupled receptors and other plasma membrane receptors stimulated by chemotactic messengers. On top of that, GRK2 has been reported to interact with a variety of signal transduction proteins related to cell migration such as MEK, Akt, PI3Kgamma or GIT. Interestingly, the levels of(More)
G protein-coupled receptor kinase 2 (GRK2) is a ubiquitous, essential protein kinase that is emerging as an integrative node in many signaling networks. Moreover, changes in GRK2 abundance and activity have been identified in several inflammatory, cardiovascular disease, and tumor contexts, suggesting that those alterations may contribute to the initiation(More)
Animals treated with formalinized Candida albicans manifest depressed cellular immune activity. Splenocytes from mice treated with as little as 14 micrograms of this material exhibited significantly reduced responses to the T cell-dependent mitogens phytohemagglutinin and concanavalin A. On the other hand, the B lymphocyte-dependent response to bacterial(More)