#### Filter Results:

#### Publication Year

1999

2012

#### Publication Type

#### Co-author

#### Publication Venue

#### Key Phrases

Learn More

The perturbation theory is developed based on small parameters which naturally appear in solid state quantum computation. We report the simulations of the dynamics of quantum logic operations with a large number of qubits (up to 1000). A nuclear spin chain is considered in which selective excitations of spins are provided by having a uniform gradient of the… (More)

- G P Berman, F Borgonovi, F M Izrailev, V I Tsifrinovich
- Physical review. E, Statistical, nonlinear, and…
- 2001

We study the properties of spectra and eigenfunctions for a chain of 1/2 spins (qubits) in an external time-dependent magnetic field and under the conditions of nonselective excitation (when the amplitude of the magnetic field is large). This model is known as a possible candidate for experimental realization of quantum computation. We present the theory… (More)

We propose a nuclear spin quantum computer based on magnetic resonance force mi-croscopy (MRFM). It is shown that an MRFM single-electron spin measurement provides three essetial requirements for quantum computation in solids: (a) preparation of the ground state, (b) one-and two-qubit quantum logic gates, and (c) a measurement of the final state. The… (More)

In this paper, we discuss the dynamical issues of quantum computation. We demonstrate that fast wave function oscillations can affect the performance of Shor's quantum algorithm by destroying required quantum interference. We also show that this destructive effect can be routinely avoided by using resonant-pulse techniques. We discuss the dynamics of… (More)

We investigate the role of long-lasting quantum coherence in the efficiency of energy transport at room temperature in Fenna-Matthews-Olson photosynthetic complexes. The excitation energy transfer due to the coupling of the light harvesting complex to the reaction center (" sink ") is analyzed using an effective non-Hermitian Hamiltonian. We show that, as… (More)

- G P Berman, G D Doolen, P C Hammel, V I Tsifrinovich
- Physical review letters
- 2001

We propose a magnetic resonance force microscopy (MRFM)-based nuclear spin quantum computer using tellurium impurities in silicon. This approach to quantum computing combines well-developed silicon technology and expected advances in MRFM. Our proposal does not use electrostatic gates to realize quantum logic operations.

- G. P. Berman, D. I. Kamenev, D. Kinion, V. I. Tsifrinovich
- Quantum Information & Computation
- 2012

- G. P. Berman, A. A. Chumak, D. I. Kamenev, D. Kinion, V. I. Tsifrinovich
- Quantum Information & Computation
- 2011

An adiabatic method for a single-shot non-demolition measurement of the phase qubit is suggested [1]. The qubit is inductively coupled to a low-frequency resonator, which in turn is connected with a classical measurement device (phase meter). The resonator drives adiabatic oscillations of the supercurrent in the qubit loop. The back reaction of the qubit… (More)

- G. P. Berman, F. Borgonovi, V. I. Tsifrinovich
- Quantum Information & Computation
- 2004

- G P Berman, F Borgonovi, G Chapline, S A Gurvitz, P C Hammel, D V Pelekhov +2 others
- 2001

Single-spin detection is one of the important challenges facing the development of several new technologies, e.g. single-spin transistors and solid-state quantum computation. Magnetic resonance force microscopy with a cyclic adi-abatic inversion, which utilizes a cantilever oscillations driven by a single spin, is a promising technique to solve this… (More)