Learn More
The tumor suppressor p53 inhibits tumor growth primarily through its ability to induce apoptosis. Mutations in p53 occur in at least 50% of human tumors. We hypothesized that reactivation of mutant p53 in such tumors should trigger massive apoptosis and eliminate the tumor cells. To test this, we screened a library of low-molecular-weight compounds in order(More)
Restoration of wild-type p53 expression triggers cell death and eliminates tumors in vivo. The identification of mutant p53-reactivating small molecules such as PRIMA-1 opens possibilities for the development of more efficient anticancer drugs. Although the biological effects of PRIMA-1 are well demonstrated, little is known about its molecular mechanism of(More)
Reactivation of mutant p53 is likely to provide important benefits for treatment of chemotherapy- and radiotherapy-resistant tumors. We demonstrate here that the maleimide-derived molecule MIRA-1 can reactivate DNA binding and preserve the active conformation of mutant p53 protein in vitro and restore transcriptional transactivation to mutant p53 in living(More)
The tumor suppressor p53 has been implicated in a growing number of biological processes, including cell cycle arrest, senescence, apoptosis, autophagy, metabolism, and aging. Activation of p53 in response to oncogenic stress eliminates nascent tumor cells by apoptosis or senescence. p53 is regulated at the protein level by posttranslational modifications(More)
The Pfizer compound CP-31398 has been reported to stabilize the core domain of the tumour suppressor p53 in vitro and be an effective anti-cancer drug by virtue of rescuing destabilized mutants of p53. We did not detect any interaction between the p53 core domain and CP-31398 in vitro by a wide range of quantitative biophysical techniques over a wide range(More)
Previous studies delineated two classes of delta binding sites; a delta binding site not associated with the opioid receptor complex, termed the delta ncx site, and a delta site associated with the opioid receptor complex, termed the delta cx site. The delta ncx site has high affinity for [D-Pen2,D-Pen5]enkephalin, and is synonymous with what is now(More)
PURPOSE APR-246 (PRIMA-1MET) is a novel drug that restores transcriptional activity of unfolded wild-type or mutant p53. The main aims of this first-in-human trial were to determine maximum-tolerated dose (MTD), safety, dose-limiting toxicities (DLTs), and pharmacokinetics (PK) of APR-246. PATIENTS AND METHODS APR-246 was administered as a 2-hour(More)
Mutant p53-carrying tumors are often more resistant to chemotherapeutical drugs. We demonstrate here that the mutant p53-reactivating compound PRIMA-1(MET) acts synergistically with several chemotherapeutic drugs to inhibit tumor cell growth. Combined treatment with cisplatin and PRIMA-1(MET) resulted in a synergistic induction of tumor cell apoptosis and(More)
beta-Funaltrexamine (beta-FNA) is an alkylating derivative of naltrexone. Considerable data support its use as an irreversible mu receptor antagonist. However, pretreatment of rats with beta-FNA attenuates the ability of delta antagonists and naloxone to reverse delta receptor-mediated physiological effects, suggesting that physically adjacent mu and delta(More)