V. Adrian Parsegian

Learn More
We have compared hydration forces, electrical dipole potentials, and structural parameters of dispersions of dipalmitoylphosphatidylcholine (DPPC) and dihexadecylphosphatidylcholine (DHPC) to evaluate the influence of fatty acid carbonyl groups on phospholipid bilayers. NMR and x-ray investigations performed over a wide range of water concentrations in the(More)
Rather than acting by modifying van der Waals or electrostatic double layer interactions or by directly bridging neighboring molecules, polyvalent ligands bound to DNA double helices appear to act by reconfiguring the water between macromolecular surfaces to create attractive long range hydration forces. We have reached this conclusion by directly measuring(More)
We used three complementary techniques to vary the chemical potential of water in lipid/water mixtures; we measured the work of removing water from the multilayer lattice formed in water by the zwitterionic phospholipid egg lecithin. By x-ray diffraction, we observed the structural consequences of water removal. There are no discrete classes of "bound(More)
With few exceptions, membrane lipids are usually regarded as a kind of filler or passive solvent for membrane proteins. Yet, cells exquisitely control membrane composition. Many phospholipids found in plasma membrane bilayers favor packing into inverted hexagonal bulk phases. It was suggested that the strain of forcing such lipids into a bilayer may affect(More)
There has been much confusion recently about the relative merits of different approaches, osmotic stress, preferential interaction, and crowding, to describe the indirect effect of solutes on macromolecular conformations and reactions. To strengthen all interpretations of measurements and to forestall further unnecessary conceptual or linguistic confusion,(More)
We have measured the repulsive force between B-form double helices in parallel packed arrays of polymer-condensed DNA in the presence of 0.005-1.0 M ionic solutions. Molecular repulsion is consistently exponential with a 2.5-3.5 A decay distance, when the separation between DNA surfaces is 5-15 A. Only weakly dependent on ionic strength and independent of(More)
The change in conductance of a small electrolyte-filled capillary owing to the passage of sub-micrometre-sized particles has long been used for particle counting and sizing. A commercial device for such measurements, the Coulter counter, is able to detect particles of sizes down to several tenths of a micrometre. Nuclepore technology (in which pores are(More)
Amphiphiles respond both to polar and to nonpolar solvents. In this paper X-ray diffraction and osmotic stress have been used to examine the phase behavior, the structural dimensions, and the work of deforming the monolayer-lined aqueous cavities formed by mixtures of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC) as a(More)
We have obtained force vs. separation relations between bilayers in 10 different phospholipid preparations: dilauroyl-dimyristoyl-, dipalmitoyl-, distearoyl-, or dioleoylphosphatidylcholine (PC); egg phosphatidylethanolamine; cholesterol-containing bilayers of dipalmitoyl PC and of egg PC. The chemical potential of water in the multilamellar lattice is(More)