Learn More
Multichannel neuromagnetic recordings were used to differentiate signals from the human first (SI) and second (SII) somatosensory cortices and to define representations of body surface in them. The responses from contralateral SI, peaking at 20-40 ms, arose mainly from area 3b, where representations of the leg, hand, fingers, lips and tongue agreed with(More)
We have examined magnetic cortical responses of 15 healthy humans to 46 different pictures of faces. At least three areas outside the occipital visual cortex appeared to be involved in processing this input, 105-560 ms after the stimulus onset. The first active area was near the occipitotemporal junction, the second in the inferior parietal lobe, and the(More)
The sampling theorem for wave-number-limited multivariable functions is applied to the problem of neuromagnetic field mapping. The wave-number spectrum and other relevant properties of these fields are estimated. A theory is derived for reconstructing neuromagnetic fields from measurements using sensor arrays which sample either the field component Bz(More)
We have recorded, with a 7-channel SQUID gradiometer, evoked magnetic responses of 6 healthy humans to interruptions of a steady rhythm of 50 ms 'standard' tone bursts repeated once every 610 ms. Ten percent of the tones occurred 'too early', 410 ms after the preceding stimulus. The response to standards peaked, on average, at 90 ms and that to the early(More)
We compared magnetic-evoked responses of human auditory cortex to short (5, 10, 20, 40, 80 and 160 ms) noise bursts and to pauses of identical durations in continuous noise. Onsets of both stimuli evoked responses with the most prominent deflection (N100m) peaking at about 100 ms. Both field maps could be explained by current dipoles, which agree with(More)
  • 1