V. A. Shchukin

Learn More
A Fokker-Planck equation is used to model the coarsening of surface nanostructure arrays. Metastable states are identified which are associated with a narrow size distribution and a coverage dependent mean island size. This is a general feature linked to nanostructures which, as a function of island size, are associated with a minimum in formation energy(More)
By means of kinetic Monte Carlo simulations of the self-organized growth of quantum dots in strained semiconductor systems we resolve the seemingly contradictory features of kinetic versus thermodynamic behavior, e.g., with respect to the temperature dependence of the average dot size and their dispersion. We show that the size distribution immediately(More)
A new method for the formation of three-dimensional (3D) strained islands in lattice-mismatched (B on A) heteroepitaxy is proposed. Once B forms a wetting layer of a subcritical thickness, material C is deposited, which is lattice matched to A and does not wet B. Then B and C phase separate forming local B-rich and C-rich domains on the surface. The(More)
We present a linear stability analysis of ultradense arrays of coherently strained islands against Ostwald ripening. Surprisingly, short-range elastic interactions are found to overcome the destabilizing contribution of surface energy, leading to a metastable array of quantum dots. Simulations of Ostwald ripening kinetics directly verify the existence of(More)
We report on progress in growth and applications of submonolayer (SML) quantum dots (QDs) in high-speed vertical-cavity surface-emitting lasers (VCSELs). SML deposition enables controlled formation of high density QD arrays with good size and shape uniformity. Further increase in excitonic absorption and gain is possible with vertical stacking of SML QDs(More)
  • 1