Learn More
In this article, we propose a bio-inspired architecture for a quadruped robot that is able to initiate/stop locomotion; generate different gaits, and to easily select and switch between the different gaits according to the speed and/or the behavioral context. This improves the robot stability and smoothness while locomoting. We apply nonlinear oscillators(More)
— The ability to traverse a wide variety of terrains while walking is basically a requirement for performing useful tasks in our human centric world. In this article, we propose a bio-inspired robotic controller able to generate locomotion and to easily switch between different type of gaits. In order to improve the robot stability and response while(More)
— Quadruped locomotion on rough terrain and unpredictable environments is still a challenge, where the concept of Central Pattern Generators (CPG) has brought interesting ideas. In this contribution we present a CPG design based on coupled oscillators, generating the required stepping movements of a limb for omnidirectional motion. Movements are on-line(More)
— This paper presents a gait multi-objective optimization system that combines bio-inspired Central Patterns Generators (CPGs) and a multi-objective evolutionary algorithm. CPGs are modeled as autonomous differential equations, that generate the necessary limb movement to perform the required walking gait. In order to optimize the walking gait, four(More)