Véronique Trézéguet

Learn More
ATP, the principal energy currency of the cell, fuels most biosynthetic reactions in the cytoplasm by its hydrolysis into ADP and inorganic phosphate. Because resynthesis of ATP occurs in the mitochondrial matrix, ATP is exported into the cytoplasm while ADP is imported into the matrix. The exchange is accomplished by a single protein, the ADP/ATP carrier.(More)
Import and export of metabolites through mitochondrial membranes are vital processes that are highly controlled and regulated at the level of the inner membrane. Proteins of the mitochondrial carrier family ( MCF ) are embedded in this membrane, and each member of the family achieves the selective transport of a specific metabolite. Among these, the ADP/ATP(More)
The oligomerization state of the ADP/ATP carrier is an important issue in understanding the mechanism underlying nucleotide exchange across the inner mitochondrial membrane. The first high resolution structure obtained in the presence of carboxyatractyloside revealed a large cavity formed within a monomer in which the inhibitor is strongly bound. Whereas(More)
The expression of a key mitochondrial membrane component, the ADP/ATP carrier, was investigated in two aerobic yeast species, Kluyveromyces lactis and Schizosaccharomyces pombe. Although the two species differ very much in their respiratory capacity, the expression of the carrier in both yeast species was decreased under partially anaerobic conditions and(More)
Under the conditions of oxidative phosphorylation, the mitochondrial ADP/ATP carrier catalyses the one to one exchange of cytosolic ADP against matrix ATP across the inner mitochondrial membrane. The ADP/ATP transport system can be blocked very specifically by two families of inhibitors: atractyloside (ATR) and carboxyatractyloside (CATR) on one hand, and(More)
The ADP/ATP carrier (AAC) that facilitates the translocation of ATP made in mitochondria is inserted at the inner mitochondrial membrane by the TIM10-TIM22 protein import system. Here we addressed the state of the AAC precursor during insertion (stage IV of import) and identified residues of the carrier important for dimerization. By a combination of (i)(More)
The mitochondrial ADP/ATP carrier (Ancp) is a paradigm of the mitochondrial carrier family, which allows cross-talk between mitochondria, where cell energy is mainly produced, and cytosol, where cell energy is mainly consumed. The members of this family share numerous structural and functional characteristics. Resolution of the atomic structure of the(More)
We isolated yeast Saccharomyces cerevisiae cells transformed with one of the three human adenine nucleotide carrier genes (HANC) that exhibited higher growth capacity than previously observed. The HANC genes were isolated from these clones, and we identified two independent mutations of HANC that led to replacement of valine 181 located in the fourth(More)
During the transport process the mitochondrial adenine nucleotide carrier (Ancp) undergoes conformational changes which result in modifications of the intrinsic fluorescence of the carrier. To further study these changes by a fluorometric approach, the three tryptophanyl residues (Trp87, Trp126, and Trp235) of the Saccharomyces cerevisiae Anc2p were(More)