Véronique Planchamp

Learn More
Functional regeneration in the CNS is limited by lesion-induced neuronal apoptosis and an environment inhibiting axonal elongation. A principal, yet unresolved question is the interaction between these two major factors. We thus evaluated the role of pharmacological inhibition of rho kinase (ROCK), a key mediator of myelin-derived axonal growth inhibition(More)
Axonal degeneration is an initial key step in traumatic and neurodegenerative CNS disorders. We established a unique in vivo epifluorescence imaging paradigm to characterize very early events in axonal degeneration in the rat optic nerve. Single retinal ganglion cell axons were visualized by AAV-mediated expression of dsRed and this allowed the(More)
Under physiological conditions, mitochondrial morphology dynamically shifts between a punctuate appearance and tubular networks. However, little is known about upstream signal transduction pathways that regulate mitochondrial morphology. We show that mitochondrial fission is a very early and kinetically invariant event during neuronal cell death, which(More)
Improved survival of injured neurons and the inhibition of repulsive environmental signalling are prerequisites for functional regeneration. BAG1 (Bcl-2-associated athanogene-1) is an Hsp70/Hsc70-binding protein, which has been shown to suppress apoptosis and enhance neuronal differentiation. We investigated BAG1 as a therapeutic molecule in the lesioned(More)
CNS regeneration is limited by lesion-induced neuronal apoptosis and an environment inhibiting axonal elongation. Inhibition of ROCK has been previously shown to promote regeneration in retinal ganglion cells (RGC) whereas Cdk5 inhibition mainly promoted survival. Therefore, we have evaluated the effects of combined treatment with inhibitors of ROCK and(More)
Several neurological disorders manifest symptoms that result from the degeneration and death of specific neurons. p53 is an important modulator of cell death, and its inhibition could be a therapeutic approach to several neuropathologies. Here, we report the design, synthesis, and biological evaluation of novel p53 inhibitors based on the(More)
Parkinson’s disease is characterized by selective and progressive loss of midbrain DAergic neurons (MDN) in the substantia nigra and degeneration of its nigrostriatal projections. Whereas the cellular pathophysiology has been closely linked to an activation of c-Jun N-terminal kinases (JNKs) and c-Jun, the involvement of JNKs in regenerative processes of(More)
  • 1