Learn More
The tyrosine kinase receptor c-Met and its ligand HGF/SF, ezrin, and splice variants of CD44 have independently been identified as tumor metastasis-associated proteins. We now show that these proteins cooperate. A CD44 isoform containing variant exon v6 sequences is strictly required for c-Met activation by HGF/SF in rat and human carcinoma cells, in(More)
Members of the CD44 family of transmembrane glycoproteins, in particular CD44v6 isoforms, were shown to be metastatic determinants of rat pancreatic tumour cells back in the early 1990s. Furthermore, the expression of several CD44 proteins correlates with aggressive stages of various human cancers. Because of the frequent and homogeneous expression of(More)
Wnt reception at the membrane is complex and not fully understood. CD44 is a major Wnt target gene in the intestine and is essential for Wnt-induced tumor progression in colorectal cancer. Here we show that CD44 acts as a positive regulator of the Wnt receptor complex. Downregulation of CD44 expression decreases, whereas CD44 overexpression increases Wnt(More)
A specific splice variant of the CD44 cell- surface protein family, CD44v6, has been shown to act as a coreceptor for the receptor tyrosine kinase c-Met on epithelial cells. Here we show that also on endothelial cells (ECs), the activity of c-Met is dependent on CD44v6. Furthermore, another receptor tyrosine kinase, VEGFR-2, is also regulated by CD44v6. The(More)
Various human cancers express elevated levels of the receptor tyrosine kinases Met or Ron and v6-containing isoforms of CD44. The activation of Met and Ron requires the presence of such CD44 v6-containing isoforms that act as coreceptors. Three amino acids within the v6 sequence were identified by mutational analysis to be essential for the coreceptor(More)
The reception and integration of the plethora of signals a cell receives from its microenvironment is decisive in determining cell behavior. Perturbation of extracellular cues, or an inappropriate response to or integration of these signals lies at the root of many diseases such as cancer. The transmembrane protein CD44 contributes to the reception of a(More)
Recent evidence has shown that the activation of receptor tyrosine kinases is not only dependent on binding of their ligands but in addition requires adhesion molecules as coreceptors. We have identified CD44v6 as a coreceptor for c-Met in several tumor and primary cells. The CD44v6 ectodomain is required for c-Met activation, whereas the cytoplasmic tail(More)
The surface protein InlB of the pathogen Listeria monocytogenes promotes invasion of this bacterium into host cells by binding to and activating the receptor tyrosine kinase Met. The curved leucine-rich repeat (LRR) domain of InlB, which is essential for this process, contains a string of five surface-exposed aromatic amino acid residues positioned along(More)
In several types of cells, the activation of the receptor tyrosine kinase c-Met by its ligand hepatocyte growth factor (HGF) requires the coreceptor CD44v6. The CD44 extracellular domain is necessary for c-Met autophosphorylation, whereas the intracellular domain is required for signal transduction. We have already shown that the CD44 cytoplasmic tail(More)
Dynamic and reciprocal heterotypic cell interactions are crucial for intestinal morphogenesis and differentiation. This paper emphasizes the role of basement membrane molecules and in particular of laminins as potent mediators in this intercellular cross talk. Changes in the expression or localization of laminin isoforms or of integrins during development(More)