Véronique Malard

Learn More
The industrial use of uranium, in particular depleted uranium, has pin-pointed the need to review its chemical impact on human health. Global methodologies, applied to the field of toxicology, have demonstrated their applicability to investigation of fine molecular mechanisms. This report illustrate the power of toxicogenomics to evaluate the involvement of(More)
The mechanisms of toxicity of metal oxide particles towards lung cells are far from being understood. In particular, the relative contribution of intracellular particulate versus solubilized fractions is rarely considered as it is very challenging to assess, especially for low-solubility particles such as cobalt oxide (Co3O4). This study was possible owing(More)
The continuing development of nanotechnology necessitates the reliable assessment of potential adverse health consequences associated with human exposures. The physicochemical properties of nanomaterials can be responsible for unexpected interactions with components of classical toxicity assays, which may generate erroneous interpretations. In this paper,(More)
The term 'exoproteome' describes the protein content that can be found in the extracellular proximity of a given biological system. These proteins arise from cellular secretion, other protein export mechanisms or cell lysis, but only the most stable proteins in this environment will remain in abundance. It has been shown that these proteins reflect the(More)
The term "bystander effect" is used to describe an effect in which cells that have not been exposed to radiation are affected by irradiated cells though various intracellular signaling mechanisms. In this study we analyzed the kinetics and mechanisms of bystander effect and radioadaptation in embryonic zebrafish cells (ZF4) exposed to chronic low dose of(More)
Uranium is used in many chemical forms in civilian and military industries and is a known nephrotoxicant. A key issue in monitoring occupational exposure is to be able to evaluate the potential damage to the body, particularly the kidney. In this study we used innovative proteomic techniques to analyse urinary protein modulation associated with acute(More)
The industrial use of uranium and particularly of depleted uranium, has pinpointed the need to review its chemical impact on human health. A proteomic approach was used to evaluate the response of a human lung cell line (A549) to uranium. We established the first 2-D reference map of the A549 cell line, identifying 87 spots corresponding to 81 major(More)
Poorly soluble cobalt (II, III) oxide particles (Co3O4P) are believed to induce in vitro cytotoxic effects via a Trojan-horse mechanism. Once internalized into lysosomal and acidic intracellular compartments, Co3O4P slowly release a low amount of cobalt ions (Co2+) that impair the viability of in vitro cultures. In this study, we focused on the genotoxic(More)
It has been estimated that more than 1 million workers in the United States are exposed to cobalt. Occupational exposure to 59 Co occurs mainly via inhalation and leads to various lung diseases. Cobalt is classified by the IARC as a possible human carcinogen (group 2B). Although there is evidence for in vivo and in vitro toxicity, the mechanisms of(More)
Human cell line secretome represents a valuable source of therapeutic targets and candidate biomarkers. Secreted proteins found in biological fluids or culture media are by essence highly diluted. Secretome investigation with proteomic approaches is hardly compatible with the high content of proteins found in complete cell culture media. Therefore, many(More)