Véronique Garçon

Learn More
Ocean warming can modify the ecophysiology and distribution of marine organisms, and relationships between species, with nonlinear interactions between ecosystem components potentially resulting in trophic amplification. Trophic amplification (or attenuation) describe the propagation of a hydroclimatic signal up the food web, causing magnification (or(More)
Meso- and submesoscales (fronts, eddies, filaments) in surface ocean flow have a crucial influence on marine ecosystems. Their dynamics partly control the foraging behavior and the displacement of marine top predators (tuna, birds, turtles, and cetaceans). In this work we focus on the role of submesoscale structures in the Mozambique Channel in the(More)
Two approaches of ocean color data merging were tested and compared in the North and Equatorial Atlantic Basin: the weighted averaging and the objective analysis. The datasets used were the daily level-3 binned data of chlorophylJ-a from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate ReSOlution Imaging Spectroradiometer on the Aqua(More)
An autonomous nutrient analyzer in situ (ANAIS) has been developed to monitor nitrate, silicate, and phosphate concentrations while deployed at sea at pressure (down to 1000 m). Detection is made by spectrophotometry. The instrument uses solenoid-driven diaphragm pumps to propel the sample, the standards, and the reagents through a microconduit, flow(More)
Surface currents in oceanic environments are of crucial importance because they transport momentum, heat, salt, and tracers over large distances that regulate both the local and large-scale climate conditions, and because they contribute to the Lagrangian displacement of floating material, ranging from living resources to marine pollution. In recent(More)
Eastern Boundary Upwelling Systems (EBUS) are characterized by a high productivity of plankton associated with large commercial fisheries, thus playing key biological and socio-economical roles. Since they are populated by several physical oceanic structures such as filaments and eddies, which interact with the biological processes, it is a major challenge(More)
The EBUS (Eastern Boundary Upwelling Systems) and OMZs (OxygenMinimum Zone) contribute very significantly to the gas exchange between the ocean and the atmosphere, notably with respect to the greenhouse gases (hereafter GHG). From in-situ ocean measurements, the uncertainty of the net global ocean-atmosphere CO2 fluxes is between 20 and 30%, and could be(More)