Véronique G Dorval

Learn More
Sumoylation is an important post-translational modification that provides a rapid and reversible means for controlling the activity, subcellular localization, and stability of target proteins. We have examined the covalent attachment of the small ubiquitin-like modifier (SUMO) proteins to tau and alpha-synuclein, two natively unfolded proteins that define(More)
Sumoylation is a post-translational modification by which small ubiquitin-like modifiers (SUMO) are covalently conjugated to target proteins. This reversible pathway provides a rapid and efficient way to modulate the subcellular localization, activity and stability of a wide variety of substrates. Similar to its well-known cousin ubiquitin, SUMO co-localize(More)
The sequential processing of the APP (amyloid precursor protein) by the beta- and gamma-secretase and generation of the Abeta (amyloid-beta) peptide is a primary pathological factor in AD (Alzheimer's disease). Regulation of the processing or turnover of these proteins represents potential targets for the development of AD therapies. Sumoylation is a(More)
During human sperm capacitation, an increase in phosphotyrosine content of specific proteins results partially from an increase in the intracellular free Ca(2+) concentrations. In the present study, the inter-regulation between protein phosphotyrosine content and the intracellular Ca(2+) concentration during the thapsigargin treatment of capacitated human(More)
Alzheimer's disease (AD) and related tauopathies comprise a large group of neurodegenerative diseases associated with the pathological aggregation of tau protein. While much effort has focused on understanding the function of tau, little is known about the endogenous mechanisms regulating tau metabolism in vivo and how these contribute to disease.(More)
Upon binding to the egg's zona pellucida, capacitated spermatozoa will undergo a calcium-dependent exocytotic event called acrosome reaction. During this process, Ca2+ depletion from internal stores is followed by an important rise in [Ca2+]i due to a massive Ca2+ influx. Previous reports have shown that the acrosome can act as a Ca2+ store and that(More)
BACKGROUND The small non-protein-coding microRNAs (miRNAs) have emerged as critical regulators of neuronal differentiation, identity and survival. To date, however, little is known about the genes and molecular networks regulated by neuronal miRNAs in vivo, particularly in the adult mammalian brain. METHODOLOGY/PRINCIPAL FINDINGS We analyzed whole genome(More)
Despite the growing number of genome-wide association studies, the involvement of polymorphisms in microRNA target sites (polymiRTS) in Alzheimer's disease (AD) remains poorly investigated. Recently, we have shown that AD-associated single-nucleotide polymorphisms (SNPs) present in the 3' untranslated region (3'UTR) of amyloid precursor protein (APP) could(More)
Alzheimer's disease (AD) is the most common neurodegenerative disease in the elderly. While advancements have been made in understanding the genetic and molecular basis of AD, the clinical diagnosis of AD remains difficult, and post-mortem confirmation is often required. Furthermore, the onset of neurodegeneration precedes clinical symptoms by approximately(More)
The abnormal regulation of amyloid-β (Aβ) metabolism (e.g., production, cleavage, clearance) plays a central role in Alzheimer's disease (AD). Among endogenous factors believed to participate in AD progression are the small regulatory non-coding microRNAs (miRs). In particular, the miR-132/212 cluster is severely reduced in the AD brain. In previous studies(More)