Learn More
By taking up serotonin (5-hydroxytryptamine, 5-HT) released in the extracellular space, the 5-HT transporter (5-HTT) regulates central 5-HT neurotransmission. Possible adaptive changes in 5-HT neurotransmission in knock-out mice that do not express the 5-HT transporter were investigated with special focus on 5-HT1A and 5-HT1B receptors. Specific labelling(More)
The hypocretins (hcrts), also known as orexins, are two recently identified excitatory neuropeptides that in rat are produced by approximately 1200 neurons whose cell bodies are located in the lateral hypothalamus. The hypocretins/orexins have been implicated in the regulation of rapid eye movement (REM) sleep and the pathophysiology of narcolepsy. In the(More)
Reduction of core body temperature has been proposed to contribute to the increased life span and the antiaging effects conferred by calorie restriction (CR). Validation of this hypothesis has been difficult in homeotherms, primarily due to a lack of experimental models. We report that transgenic mice engineered to overexpress the uncoupling protein 2 in(More)
With the aim of exploring the relationship between the serotonin transporter (5-HTT or SERT) and the activity level of serotonin (5-HT) neurotransmission, in vivo expression of this protein was specifically altered using a nonviral DNA transfer method. Plasmids containing the entire coding sequence or a partial antisense sequence of the 5-HTT gene were(More)
-The increased delivery of serotonin (5-hydroxytryptamine, 5-HT) to the lung aggravates the development of hypoxia-induced pulmonary hypertension in rats, possibly through stimulation of the proliferation of pulmonary artery smooth muscle cells (PA-SMCs). In cultured rat PA-SMCs, 5-HT (10(-8) to 10(-6) mol/L) induced DNA synthesis and potentiated the(More)
In serotonin transporter knock-out (5-HTT-/-) mice, extracellular serotonin (5-HT) levels are markedly elevated in the brain, and rapid eye movement sleep (REMS) is enhanced compared with wild-type mice. We hypothesized that such sleep impairment at adulthood results from excessive serotonergic tone during early life. Thus, we assessed whether neonatal(More)
Serotonin neurons play a major role in many normal and pathological brain functions. In the rat these neurons have a varying number of cotransmitters, including neuropeptides. Here we studied, with histochemical techniques, the relation between serotonin, some other small-molecule transmitters, and a number of neuropeptides in the dorsal raphe nucleus (DRN)(More)
A first improvement in the treatment of depression was achieved in 1970-80 with the development of selective serotonin reuptake inhibitors (SSRI) because these drugs, which are as potent antidepressants as the tricyclics, are devoid of most of the secondary effects of the latter drugs (orthostatic hypotension, weight gain, dry mouth, etc, mainly caused by(More)
The serotonin transporter (5-HTT) plays a key-role in the control of serotoninergic neurotransmission and is the target of some antidepressants. Possible adaptive changes in brain 5-HT2A receptors were investigated in knock-out mice that do not express the 5-HTT. Autoradiographic labeling of these receptors by the selective antagonist [3H]MDL 100,907 and(More)
Serotonin (5-hydroxytryptamine; 5-HT) plays key roles in sleep-wakefulness regulation. Evidence indicates that 5-HT2 receptors are involved mainly in non-rapid eye movement sleep (NREMS) regulation and respiratory control. Here, we investigated the relative contribution of 5-HT(2A), 5-HT(2B), and 5-HT(2C) receptor subtypes to NREMS and breathing during(More)