Vân Anh Huynh-Thu

Learn More
One of the pressing open problems of computational systems biology is the elucidation of the topology of genetic regulatory networks (GRNs) using high throughput genomic data, in particular microarray gene expression data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) challenge aims to evaluate the success of GRN inference algorithms(More)
BACKGROUND miRNAs are now recognized as key regulator elements in gene expression. Although they have been associated with a number of human diseases, their implication in acute and chronic asthma and their association with lung remodelling have never been thoroughly investigated. METHODOLOGY/PRINCIPAL FINDINGS In order to establish a miRNAs expression(More)
This paper proposes a novel statistical procedure based on permutation tests for extracting a subset of truly relevant variables from multivariate importance rankings derived from tree-based supervised learning methods. It shows also that the direct extension of the classical approach based on permutation tests for estimating false discovery rates of(More)
MOTIVATION Reconstructing the topology of gene regulatory networks (GRNs) from time series of gene expression data remains an important open problem in computational systems biology. Existing GRN inference algorithms face one of two limitations: model-free methods are scalable but suffer from a lack of interpretability and cannot in general be used for out(More)
MOTIVATION Univariate statistical tests are widely used for biomarker discovery in bioinformatics. These procedures are simple, fast and their output is easily interpretable by biologists but they can only identify variables that provide a significant amount of information in isolation from the other variables. As biological processes are expected to(More)
One of the long-standing open challenges in computational systems biology is the topology inference of gene regulatory networks from high-throughput omics data. Recently, two community-wide efforts, DREAM4 and DREAM5, have been established to benchmark network inference techniques using gene expression measurements. In these challenges the overall top(More)
Genome control is operated by transcription factors (TFs) controlling their target genes by binding to promoters and enhancers. Conceptually, the interactions between TFs, their binding sites, and their functional targets are represented by gene regulatory networks (GRNs). Deciphering in vivo GRNs underlying organ development in an unbiased genome-wide(More)
In many cases, feature selection is often more complicated than identifying a single subset of input variables that would together explain the output. There may be interactions that depend on contextual information, i.e., variables that reveal to be relevant only in some specific circumstances. In this setting, the contribution of this paper is to extend(More)
Gene regulatory networks (GRNs) govern phenotypic adaptations and reflect the trade-offs between physiological responses and evolutionary adaptation that act at different time-scales. To identify patterns of molecular function and genetic diversity in GRNs, we studied the drought response of the common sunflower, Helianthus annuus, and how the underlying(More)
Multiple sclerosis is a chronic, inflammatory, demyelinating disease of the central nervous system in which macrophages and microglia play a central role. Foamy macrophages and microglia, containing degenerated myelin, are abundantly found in active multiple sclerosis lesions. Recent studies have described an altered macrophage phenotype after myelin(More)
  • 1