Václav Vopálenský

Learn More
The IRESite (http://www.iresite.org) presents carefully curated experimental evidence of many eukaryotic viral and cellular internal ribosome entry site (IRES) regions. At the time of submission, IRESite stored >600 records. The IRESite gradually evolved into a robust tool providing (i) biologically meaningful information regarding the IRESs and their(More)
IRESite is an exhaustive, manually annotated non-redundant relational database focused on the IRES elements (Internal Ribosome Entry Site) and containing information not available in the primary public databases. IRES elements were originally found in eukaryotic viruses hijacking initiation of translation of their host. Later on, they were also discovered(More)
Translation initiation in the hepatitis C virus (HCV) occurs through a cap-independent mechanism that involves an internal ribosome entry site (IRES) capable of interacting with and utilizing the eukaryotic translational machinery. In this review, we focus on the structural configuration of the different HCV IRES domains and the impact of IRES primary(More)
Interleukin-1α (IL-1α) is a proinflammatory cytokine and a key player in host immune responses in higher eukaryotes. IL-1α has pleiotropic effects on a wide range of cell types, and it has been extensively studied for its ability to contribute to various autoimmune and inflammation-linked disorders, including rheumatoid arthritis, Alzheimer's disease,(More)
Sequence variability in the hepatitis C virus (HCV) genome has led to the development and classification of six genotypes and a number of subtypes. The HCV 5′ untranslated region mainly comprises an internal ribosomal entry site (IRES) responsible for cap-independent synthesis of the viral polyprotein and is conserved among all HCV genotypes. Considering(More)
Luciferases are prominent reporters in molecular and cellular biology investigations including miRNA target studies and the determination of Internal Ribosome Entry Site (IRES) activities in bicistronic assays. A majority of the current bicistronic vectors contain a firefly luciferase reporter as the second cistron. One reason for this is the presence of(More)
Paper by Masek et al. “The Luc2 gene enhances reliability of bicistronic assays” in Volume 8, Issue 5, 423–431 / May 2013; DOI: 10.2478/s11535-013-0151-z contains incomplete graphic file inserted as Figure 2. The correct Figure 2, together with its caption is presented below.
  • 1