Václav Valeš

Learn More
Controlled wrinkling of single-layer graphene (1-LG) at nanometer scale was achieved by introducing monodisperse nanoparticles (NPs), with size comparable to the strain coherence length, underneath the 1-LG. Typical fingerprint of the delaminated fraction is identified as substantial contribution to the principal Raman modes of the 1-LG (G and G').(More)
Tuning the local reactivity of graphene is a subject of paramount importance. Among the available strategies, the activation/passivation of graphene by copper substrate is very promising because it enables the properties of graphene to be influenced without any transfer procedure, since graphene can be grown directly on copper. Herein, it is demonstrated(More)
We report on the formation of Ge/Si quantum dots with core/shell structure that are arranged in a three-dimensional body centered tetragonal quantum dot lattice in an amorphous alumina matrix. The material is prepared by magnetron sputtering deposition of Al2O3/Ge/Si multilayer. The inversion of Ge and Si in the deposition sequence results in the formation(More)
Fluorination modifies the electronic properties of graphene, and thus it can be used to provide material with on-demand properties. However, the thermal stability of fluorinated graphene is crucial for any application in electronic devices. Herein, X-ray photoelectron spectroscopy (XPS), temperature-programmed desorption (TPD), and Raman spectroscopy were(More)
Raman spectroscopy and in situ Raman spectroelectrochemistry were applied to study the lithium vapor doping of C70@SWCNTs (peapods). A strong degree of doping was proved by the vanishing of the single walled carbon nanotubes (SWCNT's) radial breathing mode (RBM) and by the attenuation of the tangential (TG) band intensity. In contrast to potassium vapor(More)
We prepared a two-dimensional C70 fullerene peapod by the sequential assembly of (12)C graphene, C70 fullerenes and (13)C graphene. The local changes in the strain and doping were correlated with local roughness revealing asymmetry in the strain and doping with respect to the top and bottom graphene layers of the peapod.
Double-walled carbon nanotubes (DWCNTs) are materials in high demand due to their superior properties. However, it is very challenging to prepare DWCNTs samples of high purity. In particular, the removal of single-walled carbon nanotubes (SWCNTs) contaminants is a major problem. Here, a procedure for a selective removal of thin-diameter SWCNTs from their(More)
Graphene is a material of unmatched properties and eminent potential in disciplines ranging from physics, to chemistry, to biology. Its advancement to applications with a specific function requires rational design and fine tuning of its properties, and covalent introduction of various substituents answers this requirement. We challenged the obstacle of(More)