Václav Švorčík

Learn More
High-density polyethylene (PE) foils were modified by an Ar(+) plasma discharge and subsequent grafting with biomolecules, namely glycine (Gly), polyethylene glycol (PEG), bovine serum albumin (BSA), colloidal carbon particles (C) or BSA and C (BSA + C). As revealed by atomic force microscopy (AFM), goniometry and Rutherford Backscattering Spectroscopy(More)
Frequently observed structures in laser-surface processing are ripples, also denoted as laser-induced periodic surface structures (LIPSS). Ripples originate from the interference of the incident/refracted laser light with the scattered or diffracted light near the surface. For many polymer surfaces, organized nano-ripple structures surfaces can be induced(More)
This study deals with preparation of substrates suitable for surface-enhanced Raman spectroscopy (SERS) applications by sputtering deposition of gold layer on the polytetrafluorethylene (PTFE) foil. Time of sputtering was investigated with respect to the surface properties. The ability of PTFE-Au substrates to enhance Raman signals was investigated by(More)
We studied the electrical and optical properties, density, and crystalline structure of Au nanostructures prepared by direct current sputtering on glass. We measured temperature dependence of sheet resistance and current-voltage characteristics and also performed scanning electron microscopy [SEM] analysis of gold nanolayers. It was shown that within the(More)
Gold nanolayers sputtered on polytetrafluoroethylene (PTFE) surface and their changes induced by post-deposition annealing at 100°C to 300°C are studied. Changes in surface morphology and roughness are examined by atomic force microscopy, electrical sheet resistance by two point technique, zeta potential by electrokinetic analysis and chemical composition(More)
Porphyrin/Au and Au/porphyrin/Au systems were prepared by vacuum evaporation and vacuum sputtering onto glass substrate. The surface morphology of as-prepared systems and those subjected to annealing at 160°C was studied by optical microscopy, atomic force microscopy, and scanning electron microscopy techniques. Absorption and luminescence spectra of(More)
Silver nanolayers were sputtered on polytetrafluoroethylene (PTFE) and subsequently transformed into discrete nanoislands by thermal annealing. The Ag/PTFE composites prepared under different conditions were characterized by several complementary methods (goniometry, UV-visible spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy),(More)
In this work, we describe laser modification of poly(methyl methacrylate) films doped with Fast Red ITR, followed by dopant exclusion from the bulk polymer. By this procedure, the polymer can be modified under extremely mild conditions. Creation of surface ordered structure was observed already after application of 15 pulses and 12 mJ cm(-2) fluence.(More)
Cell colonization of synthetic polymers can be regulated by physical and chemical modifications of the polymer surface. High-density and low-density polyethylene (HDPE and LDPE) were therefore activated with Ar + plasma and grafted with fibronectin (Fn) or bovine serum albumin (BSA). The water drop contact angle usually decreased on the plasma-treated(More)
The attractiveness of synthetic polymers for cell colonization can be affected by physical, chemical, and biological modification of the polymer surface. In this study, low-density polyethylene (LDPE) was treated by an Ar(+) plasma discharge and then grafted with biologically active substances, namely, glycine (Gly), polyethylene glycol (PEG), bovine serum(More)