Uwe Waldmann

Learn More
We show that strict superposition, a restricted form of paramodulation, can be combined with specifically designed simplification rules such that it becomes a decision procedure for the monadic class with equality. The completeness of the method follows from a general notion of redundancy for clauses and superposition inferences.
The paper presents a modular superposition calculus for the combination of firstorder theories involving both total and partial functions. The modularity of the calculus is a consequence of the fact that all the inferences are pure – only involving clauses over the alphabet of either one, but not both, of the theories – when refuting goals represented by(More)
Many applications of automated deduction require reasoning in first-order logic modulo background theories, in particular some form of integer arithmetic. A major unsolved research challenge is to design theorem provers that are “reasonably complete” even in the presence of free function symbols ranging into a background theory sort. The hierarchic(More)
We extend previous results on theorem proving for first-order clauses with equality to hierarchic first-order theories. Semantically such theories are confined to conservative extensions of the base models. It is shown that superposition together with variable abstraction and constraint refutation is refutationally complete for theories that are(More)
We propose algorithms significantly extending the limits for maintaining exact representations in the verification of linear hybrid systems with large discrete state spaces. We use AND-Inverter Graphs (AIGs) extended with linear constraints (LinAIGs) as symbolic representation of the hybrid state space, and show how methods for maintaining compactness of(More)