Learn More
The proteolytic cleavage of the amyloid precursor protein (APP) has been shown to be modulated through specific muscarinic receptor activation in vitro in both transfected cell lines and native brain slices, whereas a demonstration of receptor-mediated control of APP processing under in vivo conditions is still lacking. To simulate alterations in muscarinic(More)
Alzheimer's disease is a chronic neurodegenerative disorder characterised by typical pathological hallmarks such as amyloid deposition, neurofibrillary tangles and disturbances in the expression of various cell cycle proteins. A current pathogenetic hypothesis suggests that neurons, forced by external and internal factors, leave the differentiated G(0)(More)
The increased expression and/or abnormal processing of the amyloid precursor protein (APP) is associated with the formation of amyloid plaques and cerebrovascular amyloid deposits, which are one of the major morphological hallmarks of Alzheimer's disease (AD). Among the processes regulating APP metabolism, the proteolytic cleavage of APP into amyloidogenic(More)
The pheochromocytoma PC12 cell line was used as a model system to characterize the role of the p75 neurotrophin receptor (p75NTR) and tyrosine kinase (Trk) A nerve growth factor (NGF) receptors on amyloid precursor protein (APP) expression and processing. NGF increased in a dose-dependent fashion neurite outgrowth, APP mRNA expression, and APP secretion(More)
The extracellular deposition of amyloid-beta peptide (Abeta) in brain parenchyma is one of the characteristic features of Alzheimer's disease and is suggested to induce reactive and degenerative changes in neuronal cell bodies, axons and dendritic processes. In particular, within and in close proximity to amyloid plaques, distinctive morphological(More)
Members of the transforming growth factor (TGF)-β family govern a wide range of mechanisms in brain development and in the adult, in particular neuronal/glial differentiation and survival, but also cell cycle regulation and neural stem cell maintenance. This clearly created some discrepancies in the field with some studies favouring neuronal(More)
A number of growth factors and cytokines, such as transforming growth factor beta 1 (TGF-beta1), is elevated in Alzheimer's disease (AD), giving rise to activated intracellular mitogenic signaling cascades. Activated mitogenic signaling involving the mitogen-activated protein kinases (MAPKs) and other protein kinases might alter the phosphorylation states(More)
Besides its role in Alzheimer's disease, the amyloid precursor protein (APP) is implicated in several physiological functions in neuronal tissue such as cell survival, neurite outgrowth, synaptic formation, and neuronal plasticity. The present study analyzed effects of human wild-type APP (hAPP) overexpression on adult hippocampal neurogenesis in transgenic(More)
Neurodegeneration in Alzheimer's disease (AD) is associated with the appearance of dystrophic neuronal growth profiles that most likely reflect an impairment of neuronal reorganization. This process of morphodysregulation, which eventually goes awry and becomes a disease itself, might be triggered either by a variety of life events that place an additional(More)
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by deregulation of neuronal cell cycle and differentiation control eventually resulting in cell death. During brain development, neuronal differentiation is regulated by Smad proteins, which are elements of the canonical transforming growth factor β (TGF-β) signaling pathway, linking(More)