Learn More
We consider the extension of Boolean circuits to quantified Boolean circuits by adding universal and existential quantifier nodes with semantics adopted from quantified Boolean formulas (QBF). The concept allows not only prenex representations of the form ∀x1∃y1...∀xn∃yn c where c is an ordinary Boolean circuit with inputs x1,. We also consider more general(More)
In this paper, we introduce the notion of models for quantified Boolean formulas. For various classes of quantified Boolean formulas and various classes of Boolean functions, we investigate the problem of determining whether a model exists. Furthermore, we show for these classes the complexity of the model checking problem, which is to check whether a given(More)
In this paper, quantified Horn formulas (QHORN) are investigated. We prove that the behavior of the existential quantifiers depends only on the cases where at most one of the universally quantified variables is zero. Accordingly, we give a detailed characterization of QHORN satisfiability models which describe the set of satisfying truth assignments to the(More)