Learn More
Complete cycling of mineral nitrogen (N) in soil requires the interplay of microorganisms performing nitrification and denitrification, whose activity is increasingly affected by extreme rainfall or heat brought about by climate change. In a pristine forest soil, a gradual increase in soil temperature from 5 to 25 degrees C in a range of water contents(More)
The aim of this work was to calculate indices of hydrolase production (Pr) and persistence (Pe) through simple arithmetical calculations. Changes in acid and alkaline phosphomonoesterase, phosphodiesterase, urease, protease, and β-glucosidase activities were monitored under controlled conditions in seven soils with a wide range of properties, in which(More)
Biochemical processes relevant to soil nitrogen (N) cycling are performed by soil microorganisms affiliated with diverse phylogenetic groups. For example, the oxidation of ammonia, representing the first step of nitrification, can be performed by ammonia oxidizing bacteria (AOB) and, as recently reported, also by ammonia oxidizing archaea (AOA). However,(More)
The carbon-use-efficiency (CUE) of microorganisms is an important parameter in determining ecosystem-level carbon (C) cycling; however, little is known about how variance in resources affects microbial CUE. To elucidate how resource quantity and resource stoichiometry affect microbial CUE, we cultured four microorganisms - two fungi (Aspergillus nidulans(More)
Denitrification represents one of the main microbial processes producing the primary and secondary greenhouse gases nitrous oxide (N2O) and nitric oxide (NO) in soils. It is well established that abiotic factors like the soil water content and the availability of nitrogen (N) are key parameters determining the activity of denitrifiers in soils. However,(More)
  • 1