Urszula Jelen

Learn More
For beamlet-based IMRT optimization, fast and less accurate dose computation algorithms are frequently used, while more accurate algorithms are needed to recompute the final dose for verification. In order to speed up the optimization process and ensure close proximity between dose in optimization and verification, proper consideration of dose gradients and(More)
BACKGROUND AND PURPOSE To evaluate the performance of ten different treatment-planning systems when intensity modulated (IMRT) plans are designed for breast treatments that include the irradiation of the internal mammary chain. PATIENTS AND METHODS A dataset of five patients (CT images and volumes of interest) was distributed to design IMRT plans on the(More)
Dose optimization for intensity modulated radiotherapy (IMRT) using small field elements (beamlets) requires the computation of a large number of very small, often only virtual fields of typically a few mm to 1 cm in size. The primary requirements for a suitable dose computation algorithm are (1) speed and (2) proper consideration of the penumbra of the(More)
AIM To study the dose-response of stage I non-small-cell lung cancer (NSCLC) in terms of long-term local tumor control (LC) after conventional and hypofractionated photon radiotherapy, modeled with the linear-quadratic (LQ) and linear-quadratic-linear (LQ-L) approaches and to estimate the clinical α/β ratio within the LQ frame. MATERIAL AND METHODS We(More)
INTRODUCTION Image-guided advanced photon and particle beam treatments are promising options for improving lung treatments. Extensive use of imaging increases the overall patient dose. The aim of this study was to determine the imaging dose for different IGRT solutions used in photon and particle beam therapy. MATERIAL AND METHODS Measurements were(More)
Targeting at the development of an accurate and efficient dose calculation engine for online adaptive radiotherapy, we have implemented a finite-size pencil beam (FSPB) algorithm with a 3D-density correction method on graphics processing unit (GPU). This new GPU-based dose engine is built on our previously published ultrafast FSPB computational framework(More)
PURPOSE To assess the robustness of scanned ion beam treatment plans against the interfraction internal target motion and evaluate the limits of validity of target-based isocenter realignment for prostate cancer radiation therapy. METHODS AND MATERIALS For 12 prostate patients, scanned beam carbon ion treatment plans were prepared using 2 lateral opposed(More)
In particle therapy, the interplay between beam scanning and target motion during treatment delivery may result in dose deterioration. Interplay effects have been studied for targets exhibiting periodic respiratory motion, however, they are not well understood for irregular motion patterns, such as those exhibited by the prostate. In this note, we propose(More)
Scanned ion beam delivery enables the highest degree of target dose conformation attainable in external beam radiotherapy. Nominal pencil beam widths (spot sizes) are recorded during treatment planning system commissioning. Due to changes in the beam-line optics, the actual spot sizes may differ from these commissioning values, leading to differences(More)
BACKGROUND It is expected that physical dose deposition properties render charged particle dose distributions sensitive to targeting uncertainties. Purpose of this work was to investigate the robustness of scanned-beam particle therapy plans against setup errors for different optimization modalities, beam setups and ion species. MATERIAL AND METHODS For(More)