Learn More
This year marks the 20th anniversary of functional near-infrared spectroscopy and imaging (fNIRS/fNIRI). As the vast majority of commercial instruments developed until now are based on continuous wave technology, the aim of this publication is to review the current state of instrumentation and methodology of continuous wave fNIRI. For this purpose we(More)
Millisecond changes in the optical properties of the human brain during stimulation were detected in five volunteers using noninvasive frequency-domain near-infrared spectroscopy. During a motor stimulation task we found highly significant signals, which were directly related to neuronal activity and exhibited much more localized patterns than the slow(More)
Brain activity is associated with physiological changes, which alter the optical properties of the tissue in the near-infrared part of the spectrum. Two major types of optical signals following functional brain activation can be distinguished: a slow signal due to hemodynamic changes and a fast signal, which is directly related to neuronal activity. The(More)
The aim was to investigate the effect of different speech tasks, i.e. recitation of prose (PR), alliteration (AR) and hexameter (HR) verses and a control task (mental arithmetic (MA) with voicing of the result on end-tidal CO2 (PETCO2), cerebral hemodynamics and oxygenation. CO2 levels in the blood are known to strongly affect cerebral blood flow. Speech(More)
BACKGROUND It is often stated that external validity is not sufficiently considered in the assessment of clinical studies. Although tools for its evaluation have been established, there is a lack of awareness of their significance and application. In this article, a comprehensive checklist is presented addressing these relevant criteria. METHODS The(More)
We investigated the influence of the adipose tissue thickness (ATT) on near-infrared spectroscopy (NIRS) measurements of the absorption coefficient (mu a), the reduced scattering coefficient (mu s') and changes in concentrations of oxyhemoglobin ([O2Hb]) and deoxyhemoglobin ([HHb]). We used a frequency domain spectrometer and a special probe to generate(More)
The aim of this study was to investigate the effects of inner and heard speech on cerebral hemodynamics and oxygenation in the anterior prefrontal cortex (PFC) using functional near-infrared spectroscopy and to test whether potential effects were caused by alterations in the arterial carbon dioxide pressure (PaCO2). Twenty-nine healthy adult volunteers(More)
Using non-invasive near infrared spectroscopy fast changes in the range of ms in the optical properties of neurons during brain activity have been described. Since the signal is small, the system to detect it has to be highly noise optimized. We used a frequency-domain tissue oximeter, whose laser diodes were modulated at 110 MHz and the amplitude (AC),(More)
The aim of the present study was (i) to investigate the effect of inner speech on cerebral hemodynamics and oxygenation, and (ii) to analyze if these changes could be the result of alternations of the arterial carbon dioxide pressure (PaCO2). To this end, in seven adult volunteers, we measured changes of cerebral absolute [O2Hb], [HHb], [tHb] concentrations(More)
Since the first demonstration of how to simultaneously measure brain activity using functional magnetic resonance imaging (fMRI) on two subjects about 10 years ago, a new paradigm in neuroscience is emerging: measuring brain activity from two or more people simultaneously, termed "hyperscanning". The hyperscanning approach has the potential to reveal(More)