Learn More
This year marks the 20th anniversary of functional near-infrared spectroscopy and imaging (fNIRS/fNIRI). As the vast majority of commercial instruments developed until now are based on continuous wave technology, the aim of this publication is to review the current state of instrumentation and methodology of continuous wave fNIRI. For this purpose we(More)
Millisecond changes in the optical properties of the human brain during stimulation were detected in five volunteers using noninvasive frequency-domain near-infrared spectroscopy. During a motor stimulation task we found highly significant signals, which were directly related to neuronal activity and exhibited much more localized patterns than the slow(More)
Since the first demonstration of how to simultaneously measure brain activity using functional magnetic resonance imaging (fMRI) on two subjects about 10 years ago, a new paradigm in neuroscience is emerging: measuring brain activity from two or more people simultaneously, termed "hyperscanning". The hyperscanning approach has the potential to reveal(More)
Fast changes, in the range of milliseconds, in the optical properties of cerebral tissue are associated with brain activity and can be detected using non-invasive near-infrared spectroscopy (NIRS). These changes are assumed to be caused by changes in the light scattering properties of the neuronal tissue. The aim of this study was to develop highly(More)
Neurovascular coupling is the generic term for changes in cerebral metabolic rate of oxygen (CMRO(2)), cerebral blood flow, and cerebral blood volume related to brain activity. The goal of this paper is to better understand the effects of neurovascular coupling in the visual and motor cortices using frequency-domain near-infrared spectroscopy. Maps of(More)
The basic parameters for physiological measurements provided by near-infrared spectroscopy are the local absorption and scattering coefficients. For the adult human head, they have been difficult to measure noninvasively because of the layered structure of the head. The results of measurements of absorption and reduced scattering coefficients through the(More)
Brain activity is associated with physiological changes, which alter the optical properties of the tissue in the near-infrared part of the spectrum. Two major types of optical signals following functional brain activation can be distinguished: a slow signal due to hemodynamic changes and a fast signal, which is directly related to neuronal activity. The(More)
We review our most recent results on near-IR studies of human brain activity, which have been evolving in two directions: detection of neuronal signals and measurements of functional hemodynamics. We discuss results obtained so far, describing in detail the techniques we developed for detecting neuronal activity, and presenting results of a study that, as(More)
Cerebral hemodynamic responses due to normal aging may interfere with hormonal changes, drug therapy, diseases, life style, and other factors. Age-correlated alterations in cerebral vasculature and autoregulatory mechanisms are the subject of interest in many studies. Near-infrared spectroscopy (NIRS) is widely used for monitoring cerebral hemodynamics and(More)
The aim of our study was to explore the possibility of detecting hemodynamic changes in the brain using the phase of the intensity modulated optical signal. To obtain optical signals with the highest possible signal-to-noise ratio, we performed a series of simultaneous NIRS-fMRI measurements, with subsequent correlation of the time courses of both(More)