Learn More
The activities of type I protein phosphatases play a central role in eukaryotic cell cycle control. Here, we report the cloning and characterization from the flowering plant Arabidopsis thaliana of a cDNA clone named PP1-At which is highly homologous to protein phosphatase 1. The deduced amino acid sequence of PP1-At shows that the PP1-At protein is 318(More)
Through a screen designed to isolate novel fission yeast genes required for chromosome segregation, we have identified mal3+. The mal3-1 mutation decreased the transmission fidelity of a nonessential minichromosome and altered sensitivity to microtubule-destabilizing drugs. Sequence analysis revealed that the 35-kD Mal3 is a member of an evolutionary(More)
Linker arrays were added to the 5' and 3' boundaries of the Saccharomyces cerevisiae LYS2 gene, which allow the generation of 18 LYS2 cartridges with different sticky ends. As it was necessary to define the beginning and the end of the approx. 4.5-kb LYS2 gene, we sequenced 1 kb of its 5' and 1.5 kb of its 3' region and mapped the mRNA start point. The open(More)
The cdc2 gene product, a 34-kDa phosphoprotein with serine/threonine protein kinase activity, has been implicated as the key component in the regulation of the eucaryotic cell cycle. Activation of the cdc2 protein kinase is regulated by its phosphorylation state and by interaction with other proteins. We have mutagenized the fission yeast cdc2 gene to(More)
The Schizosaccharomyces pombe CLIP170-associated protein (CLASP) Peg1 was identified in a screen for mutants with spindle formation defects and a screen for molecules that antagonized EB1 function. The conditional peg1.1 mutant enabled us to identify key features of Peg1 function. First, Peg1 was required to form a spindle and astral microtubules, yet(More)
By a screen designed to isolate new fission yeast genes required for chromosome segregation, we have identified mal2+. The conditionally lethal mal2-1 allele gives rise to increased loss of a nonessential minichromosome at the permissive temperature and leads to severe missegregation of the chromosomes at the nonpermissive temperature. Cloning by(More)
Precise segregation of chromosomes requires the activity of a specialized chromatin region, the centromere, that assembles the kinetochore complex to mediate the association with spindle microtubules. We show here that Mal2p, previously identified as a protein required for genome stability, is an essential component of the fission yeast centromere. Loss of(More)
We identified a truncated allele of dam1 as a multicopy suppressor of the sensitivity of cdc13-117 (cyclin B) and mal3-1 (EB-1) cells to thiabendazole, a microtubule poison. We find that Dam1 binds to the plus end of spindle microtubules and kinetochores as cells enter mitosis and this is dependent on other components of the fission yeast DASH complex,(More)
The auxin-binding protein At-ERabp1 is of very low abundance in Arabidopsis thaliana; it hinders any study at the protein level as it is difficult to collect large amounts from the plant. We therefore chose to express At-ERabp1 in baculovirus-infected insect cells. Recombinant baculoviruses were selected in yeast according to Patel et al. (Nucleic Acids(More)
Centromeres are essential components of eucaryotic chromosomes. In budding yeast, up to now, 15 of the 16 centromere DNAs have been isolated. Here we report the functional isolation and characterization of CEN8, the last of the yeast centromeres missing. The centromere consensus sequence for the 16 chromosomes in this organism is presented.