Learn More
An antibody directed against protein kinase C (PKC) was applied to various mammalian retinae. In the cat, rat, rabbit, and macaque monkey we found PKC-like immunoreactivity in bipolar cells which had the morphology of rod bipolar cells; in the rat some amacrine cells were also immunoreactive. In the outer plexiform layer, labeled dendrites were always the(More)
The Eph family of receptor tyrosine kinases and their ligands, the ephrins, are important regulators of axon guidance and cell migration in the developing nervous system. Inactivation of the EphA4 gene results in axon guidance defects of the corticospinal tract, a major descending motor pathway that originates in the cortex and terminates at all levels of(More)
Three approaches to study the function of mammalian rod bipolar cells are described. Extracellular recordings from the intact cat eye under light- and dark-adapted conditions showed that in dark-adapted retina all light responses can be blocked by 2-amino-4-phosphonobutyrate (APB). Immunocytochemical staining with an antibody against protein kinase C (PKC)(More)
Retinae of macaque monkeys were immuno-stained with antibodies against GABAA-receptors. In peripheral retina most ganglion cells were immunoreactive. In central retina, around the fovea, staining in the ganglion cell layer was selective and only 5-8% of all ganglion cells were labelled: these had the largest cell bodies and their dendrites occupied a broad(More)
While photoreceptor loss is the most devastating result of inherited retinal degenerations such as retinitis pigmentosa, inner retinal neurons also undergo significant alteration. Detailing these changes has become important as many vision restorative therapies target the remaining neurons. In this study, the rd1-Fos-Tau-LacZ (rd1-FTL) mouse model was used(More)
Many common causes of blindness involve the death of retinal photoreceptors, followed by progressive inner retinal cell remodeling. For an inducible model of retinal degeneration to be useful, it must recapitulate these changes. Intravitreal administration of adenosine triphosphate (ATP) has recently been found to induce acute photoreceptor death. The aim(More)
The expression of five genes (GluR A; B; C; D; GluR 5) encoding functional subunits of glutamate receptors was investigated in the rat retina using in situ hybridization with oligonucleotide probes. All five genes are expressed in the retina. All probes label cell bodies in the ganglion cell layer as well as somata in the inner third of the inner nuclear(More)
The distribution of gamma-aminobutyric acidA (GABAA) receptors in the rabbit retina is investigated and compared with the distribution of GABAergic neurons using immunocytochemical methods. Antibodies against the alpha 1, beta 2/3, and gamma 2 subunits of the GABAA receptor label subpopulations of bipolar, amacrine and ganglion cells. Double labeling(More)
Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian retina. The present paper describes the localization of GABAA receptors in the rat retina as revealed by in situ hybridization and immunocytochemistry. In situ hybridization with probes against various alpha subunits revealed a marked differential expression pattern.(More)
The distributions of nine different subunits of the gamma-aminobutyric acidA (GABAA) receptor (alpha 1, alpha 2, alpha 3, alpha 5; beta 1, beta 2, beta 3; gamma 2; delta) were investigated in the rat retina using immunocytochemistry and in situ hybridization. With the exception of the alpha 5 subunit, all subunits could be localized. Each subunit was(More)