Ursula Debarnot

Learn More
Recently, it has been suggested that the primary motor cortex (M1) plays a critical role in implementing the fast and transient post-training phase of motor skill consolidation, known to yield an early boost in performance. Whether a comparable early boost in performance occurs following motor imagery (MIM) training is still unknown. To address this issue,(More)
BACKGROUND During non-rapid eye movement (NREM) sleep synchronous neural oscillations between neural silence (down state) and neural activity (up state) occur. Sleep Slow Oscillations (SSOs) events are their EEG correlates. Each event has an origin site and propagates sweeping the scalp. While recent findings suggest a SSO key role in memory consolidation(More)
Motor-skill practice in repetitive or variable orders leads to better within-day acquisition and facilitates retention and transfer, respectively. This practice pattern effect has been robustly found for physical practice, but little is known about its effect after motor imagery (MI) practice. In the present study, we investigated the effect of constant or(More)
STUDY OBJECTIVES Sleep is known to enhance performance following physical practice (PP) of a new sequence of movements. Apart from a pilot study, it is still unknown whether a similar sleep-dependent consolidation effect can be observed following motor imagery (MI) and whether this mnemonic process is related to MI speed. DESIGN Counterbalanced(More)
A wide range of experimental studies have provided evidence that a night of sleep may enhance motor performance following physical practice (PP), but little is known, however, about its effect after motor imagery (MI). Using an explicitly learned pointing task paradigm, thirty participants were assigned to one of three groups that differed in the training(More)
Sleep is known to contribute to motor memory consolidation. Recent studies have provided evidence that a night of sleep plays a similar functional role following motor imagery (MI), while the simple passage of time does not result in performance gains. Here, we examined the benefits of a daytime nap on motor memory consolidation after MI practice.(More)
The present study aimed to investigate whether an interference task might impact the sleep-dependent consolidation process of a mentally learned sequence of movements. Thirty-two participants were subjected to a first training session through motor imagery (MI) or physical practice (PP) of a finger sequence learning task. After 2h, half of the participants(More)
Skill learning is the improvement in perceptual, cognitive, or motor performance following practice. Expert performance levels can be achieved with well-organized knowledge, using sophisticated and specific mental representations and cognitive processing, applying automatic sequences quickly and efficiently, being able to deal with large amounts of(More)
Recent studies suggest that a night of sleep may play a similar functional role following motor imagery (MI) practice. Here we examined whether offline gains following MI of a finger tapping sequence depends on the degree of complexity of the motor sequence, and whether this improvement differentially affects the individual transitions of the motor-sequence(More)
Retroactive interference from a declarative memory can prevent the consolidation of motor skill memories over wakefulness, but not over a night of sleep. Recently, motor imagery (MI) learning has been showed to allow for a stronger resistance against procedural interference rather than physical practice, but whether declarative interference might impact(More)