Urs Rutishauser

Learn More
Polysialic acid (PSA) is a cell-surface glycan with an enormous hydrated volume that serves to modulate the distance between cells. This regulation has direct effects on several cellular mechanisms that underlie the formation of the vertebrate nervous system, most conspicuously in the migration and differentiation of progenitor cells and the growth and(More)
Lectin affinity chromatography combined with mAb production was used to identify chick neural cell surface molecules related to L1 antigen, a mouse neural glycoprotein implicated in cell-cell adhesion (Rathjen, F. G., and M. Schachner, 1984, EMBO (Eur. Mol. Biol. Organ.) J., 3:1-10). A glycoprotein, G4 antigen, isolated by mAb G4 from adult chick brain is(More)
N-CAM is abundantly expressed in the nervous system in the form of numerous structural variants with characteristic distribution patterns and functional properties. N-CAM-180, the variant having the largest cytoplasmic domain, is expressed by all neurons. The N-CAM-180-specific exon 18 has been deleted to generate homozygous mice unable to express this(More)
The mutation of N-CAM in mice produces a phenotype dominated by an undersized olfactory bulb and accumulation of precursors in the subependymal layer. We demonstrate here that this defect can be duplicated by injection of an enzyme that specifically destroys the polysialic acid (PSA) moiety associated with N-CAM. Studies of BrdU-labeled and pyknotic cells(More)
Transplantation studies have been used to show that tangential migration of olfactory bulb interneuron precursors is retarded in NCAM-mutant mice, and that this defect reflects loss of NCAM polysialic acid (PSA). In contrast, radial migration of cells within the bulb did not require PSA. Reciprocal transplantations between wild-type and mutant mice have(More)
The mossy fiber axons of both the developing and adult dentate gyrus express the highly polysialylated form of neural cell adhesion molecule (NCAM) as they innervate the proximal apical dendrites of pyramidal cells in the CA3 region of the hippocampus. The present study used polysialic acid (PSA)-deficient and NCAM mutant mice to evaluate the role of PSA in(More)
Oligodendrocytes, the myelinating cells of the vertebrate CNS, originally develop from cells of the neuroepithelium. Recent studies suggest that spinal cord oligodendrocyte precursors are initially localized in the region of the ventral ventricular zone and subsequently disperse throughout the spinal cord. The characteristics of these early oligodendrocyte(More)
Polysialic acid (PSA), a homopolymer attached to the neural cell adhesion molecule (NCAM), serves as a modulator of cell interactions. Polysialic acid exhibits a highly regulated expression pattern. During embryonic development its abundant expression is closely correlated with axon pathfinding and targeting, and with certain aspects of muscle formation.(More)
The role of polysialic acid (PSA) during initial innervation of chick muscle was examined. Previously, the adhesion molecules L1 and N-CAM were shown to be important in balancing axon-axon and axon-muscle adhesion during this process. Here we demonstrate developmental changes in the pattern of innervation that are not correlated with levels of L1 or N-CAM(More)
Removal of polysialic acid (PSA) from N-CAM during the time when chick motoneuron axons are segregating into target-specific fascicles at the base of the limb was previously shown to result in motoneuron projection errors. Here, it is established that these errors are associated with altered growth cone behavior in the plexus. In contrast to control(More)