Learn More
This review describes the present state of a project to identify and characterize novel nervous system proteins by using monoclonal antibodies (mAbs) against the Drosophila brain. Some 1,000 hybridoma clones were generated by injection of homogenized Drosophila brains or heads into mice and fusion of their spleen cells with myeloma cells. Testing the mAbs(More)
Eukaryotic cells contain multiple organelles, which are functionally and structurally interconnected. The endoplasmic reticulum-mitochondria encounter structure (ERMES) forms a junction between mitochondria and the endoplasmic reticulum (ER). Four ERMES proteins are known in yeast, the ER-anchored protein Mmm1 and three mitochondria-associated proteins,(More)
During the last decade, protein analysis and proteomics have been established as new tools for understanding various biological problems. As the identification of proteins after classical separation techniques, such as two-dimensional gel electrophoresis, have become standard methods, new challenges arise in the field of proteomics. The development of(More)
Yeast proteome research comprises two different aspects: with respect to systemic fungal infections (fungemias), invasive candidiasis, for instance by Candida albicans, is among the most common causes of morbidity and mortality particularly in the expanding population of immunocompromised patients, which rises a high medical and pharmaceutical interest in(More)
The anti-apoptotic molecule Aven was originally identified in a yeast two-hybrid screen for Bcl-x(L)-interacting proteins and has also been found to bind Apaf-1, thereby interfering with Apaf-1 self-association during apoptosome assembly. Aven is expressed in a wide variety of adult tissues and cell lines, and there is increasing evidence that its(More)
We present the first focused proteome study on human platelet membranes. Due to the removal of highly abundant cytoskeletal proteins a wide spectrum of known platelet membrane proteins and several new and hypothetical proteins were accessible. In contrast to other proteome studies we focused on prefractionation and purification of membranes from human(More)
Among known platelet proteins, a prominent and functionally important group is represented by glycoprotein isoforms. They account e.g. for secretory proteins and plasma membrane receptors including integrins and glycoprotein VI as well as intracellular components of cytosol and organelles including storage proteins (multimerin 1 etc.). Although many of(More)
Ewing tumors comprise the second most common type of bone-associated cancer in children and are characterized by oncogenic EWS/FLI1 fusion proteins and early metastasis. Compelling evidence suggests that elevated levels of intracellular oxidative stress contribute to enhanced aggressiveness of numerous cancers, possibly including Ewing tumors. Using(More)
Elucidation of post-translational modifications to proteins, such as glycosylations or phosphorylations, is one of the major issues concerning ongoing proteomics studies. To reduce general sample complexity, a necessary prerequisite is specific enrichment of peptide subsets prior to mass spectrometric sequencing. Regarding analysis of overall(More)
A comprehensive analysis of plasma membrane proteins is essential to in-depth understanding of brain development, function, and diseases. Proteomics offers the potential to perform such a comprehensive analysis, yet it requires efficient protocols for the purification of the plasma membrane compartment. Here, we present a novel and efficient protocol for(More)