Uroš Savković

  • Citations Per Year
Learn More
Expansion of the host range in phytophagous insects depends on their ability to form an association with a novel plant through changes in host-related traits. Phenotypic plasticity has important effects on initial survival of individuals faced with a new plant, as well as on the courses of evolutionary change during long-term adaptation to novel conditions.(More)
Products and regulatory motifs of the mitochondrial and nuclear genomes interact closely to enable efficient cellular energy production within mitochondria. Although recent evidences support the prediction that during evolutionary time combinations of these interactions are optimized by selection acting on important life history traits, relatively few(More)
Mitochondria play a key role in ageing. The pursuit of genes that regulate variation in life span and ageing have shown that several nuclear-encoded mitochondrial genes are important. However, the role of mitochondrial encoded genes (mtDNA) is more controversial and our appreciation of the role of mtDNA for the evolution of life span is limited. We use(More)
We tested mutation accumulation hypothesis for the evolution of senescence using short-lived and long-lived populations of the seed-feeding beetle, Acanthoscelides obtectus (Say), obtained by selection on early- and late-life for many generations. The expected consequence of the mutation accumulation hypothesis is that in short-lived populations, where the(More)
The role of mitochondrial DNA for the evolution of life-history traits remains debated. We examined mitonuclear effects on the activity of the multisubunit complex of the electron transport chain (ETC) involved in oxidative phosphorylation (OXPHOS) across lines of the seed beetle Acanthoscelides obtectus selected for a short (E) or a long (L) life for more(More)
Mitochondria are suggested to play a central role in ageing and evolution of longevity. Gradual decline in mitochondrial function during ageing and concomitant increase in production of reactive oxygen species (ROS) leads to oxidative damage of macromolecules and impairment of ATP synthesis. To assess relationship between ageing and oxidative stress(More)
  • 1