Learn More
BACKGROUND & OBJECTIVES Bacillus anthracis, Yersinia pestis, Burkholderia pseudomallei and Brucella species are potential biowarfare agents. Classical bacteriological methods for their identification are cumbersome, time consuming and of potential risk to the handler. METHODS We describe a sensitive and specific multiplex polymerase chain reaction (mPCR)(More)
Plague is one of the most dangerous infections in humans caused by Yersinia pestis, a Gram-negative bacterium. Despite of an overwhelming research success, no ideal vaccine against plague is available yet. It is well established that F1/LcrV based vaccine requires a strong cellular immune response for complete protection against plague. In our earlier(More)
The need for a rapid detection and characterization of biowarfare (BW) agents cannot be over emphasized. With diverse array of potential BW pathogen available presently, rapid identification of the pathogen is crucial, so that specific therapy and control measures can be initiated. We have developed a multiplex polymerase chain reaction based reverse line(More)
No ideal vaccine exists to control plague, a deadly dangerous disease caused by Yersinia pestis. In this context, we cloned, expressed and purified recombinant F1, LcrV antigens of Y. pestis and heat shock protein70 (HSP70) domain II of M. tuberculosis in E. coli. To evaluate the protective potential of each purified protein alone or in combination, Balb/C(More)
Antibody based assays are very important for early and accurate detection of Bacillus anthracis in different sample matrices to initiate effective response and control strategies during biological emergencies and natural outbreaks. To achieve this, murine monoclonal antibodies were generated against Extractable antigen 1 (EA1) of B. anthracis which was(More)
Plague is one of the world's most lethal human diseases caused by Yersinia pestis, a Gram-negative bacterium. Despite overwhelming studies for many years worldwide, there is no safe and effective vaccine against this fatal disease. Inhalation of Y. pestis bacilli causes pneumonic plague, a fast growing and deadly dangerous disease. F1/LcrV-based vaccines(More)
Bacillus anthracis secretory protein protective antigen (PA) is primary candidate for subunit vaccine against anthrax. Attempts to obtain large quantity of PA from Escherichia coli expression system often result in the formation of insoluble inclusion bodies. Therefore, it is always better to produce recombinant proteins in a soluble form. In the present(More)
Bacillus anthracis chimeric molecule PALFn, comprising the immunodominant domains of protective antigen (PA) and lethal factor (LF), has been developed in the past and has been shown to confer enhanced protection against anthrax in mouse model when challenged with anthrax lethal toxin (LeTx). However, the immunological correlates for this chimeric antigen,(More)
The " International Journal of Pharma and Bio Sciences " (IJPBS) is an international journal in English published quarterly. The aim of IJPBS is to publish peer reviewed research and review articles rapidly without delay in the developing field of pharmaceutical and biological sciences And indexed/catalogued in many more university
Burkholderia pseudomallei, the causative agent of melioidosis has been recognized by CDC as a category B select agent. Although substantial efforts have been made for development of vaccine molecules against the pathogen, significant hurdles still remain. With no licensed vaccines available and high relapse rate of the disease, there is a pressing need for(More)