Learn More
The organizing principles that govern the layout of human object-related areas are largely unknown. Here we propose a new organizing principle in which object representations are arranged according to a central versus peripheral visual field bias. The proposal is based on the finding that building-related regions overlap periphery-biased visual field(More)
To what extent do all brains work alike during natural conditions? We explored this question by letting five subjects freely view half an hour of a popular movie while undergoing functional brain imaging. Applying an unbiased analysis in which spatiotemporal activity patterns in one brain were used to "model" activity in another brain, we found a striking(More)
We have combined functional maps of retinotopy (eccentricity and meridian mapping), object category, and motion in a group of subjects to explore the large-scale topography of higher-order object areas. Our results reveal seven consistent category-related entities situated in the occipito-temporal cortex adjoining early visual areas. These include two(More)
Functional magnetic resonance imaging (fMRI) is an important tool for investigating human brain function, but the relationship between the hemodynamically based fMRI signals in the human brain and the underlying neuronal activity is unclear. We recorded single unit activity and local field potentials in auditory cortex of two neurosurgical patients and(More)
We have recently proposed a center-periphery organization based on resolution needs, in which objects engaging in recognition processes requiring central-vision (e.g., face-related) are associated with center-biased representations, while objects requiring large-scale feature integration (e.g., buildings) are associated with periphery-biased(More)
Congenital prosopagnosia is a severe impairment in face identification manifested from early childhood in the absence of any evident brain lesion. In this study, we used fMRI to compare the brain activity elicited by faces in a congenital prosopagnosic subject (YT) relative to a control group of 12 subjects in an attempt to shed more light on the nature of(More)
Verbal communication is a joint activity; however, speech production and comprehension have primarily been analyzed as independent processes within the boundaries of individual brains. Here, we applied fMRI to record brain activity from both speakers and listeners during natural verbal communication. We used the speaker's spatiotemporal brain activity to(More)
Topographic mapping is a ubiquitous property of sensory and motor cortex: there is an orderly and gradual change in some functional property of cortical neurons laid along the cortical surface. However, the topographical map is never a simple copy of the sensory surface, rather it undergoes complex and precise transformations, along well-defined organizing(More)
When exposing subjects to a continuous segment of an audiovisual movie, a large expanse of human cortex, especially in the posterior half of the cerebral cortex, shows stimulus-driven activity. However, embedded within this widespread activity, there are cortical regions whose activity is dissociated from the external stimulation. These regions are(More)
Real-world events unfold at different time scales and, therefore, cognitive and neuronal processes must likewise occur at different time scales. We present a novel procedure that identifies brain regions responsive to sensory information accumulated over different time scales. We measured functional magnetic resonance imaging activity while observers viewed(More)