Learn More
Hydroids, members of the most ancient eumetazoan phylum, the Cnidaria, harbor multipotent, migratory stem cells lodged in interstitial spaces of epithelial cells and are therefore referred to as interstitial cells or i-cells. According to traditional understanding, based on studies in Hydra, these i-cells give rise to several cell types such as stinging(More)
Wnt/Frizzled/ss-catenin-based signaling systems play diverse roles in metazoan development, being involved not only in the establishment of body axes in embryogenesis but also in regulating stem cell fate in mammalian post-embryonic development. We have studied the role the canonical Wnt cascade plays in stem cell fate determination in Hydractinia, a member(More)
We have studied the role the canonical Wnt pathway plays in hydroid pattern formation during embryonic development and metamorphosis. Transcripts of Wnt and Tcf were asymmetrically deposited in the oocyte and subsequent developmental stages, marking the sites of first cleavage, posterior larval pole and the upcoming head of the metamorphosed polyp. To(More)
Hydractinia, a representative marine colonial hydroid, was the first organism in the history of biology in which migratory precursors of germ cells were described and termed "stem cells" (Weismann, 1883). These stem cells, now known as interstitial cells (i-cells), are thought to remain pluripotent throughout their life. Using animals depleted of their own(More)
The evolutionary origin of stem cell pluripotency is an unresolved question. In mammals, pluripotency is limited to early embryos and is induced and maintained by a small number of key transcription factors, of which the POU domain protein Oct4 is considered central. Clonal invertebrates, by contrast, possess pluripotent stem cells throughout their life,(More)
Chitinases are enzymes that degrade chitin, the second most abundant polymer in nature. They are ubiquitous among living organisms where they play a role in development, food-digestion and innate immunity. We have cloned and characterized the first cnidarian chitinase cDNA from the hydroid Hydractinia. The Hydractinia chitinase exhibits a typical secreted(More)
To analyse cell migration and the differentiation potential of migratory stem cells in Hydractinia, we generated animals with an eGFP reporter gene stably expressed and transmitted via the germline. The transgene was placed under the control of two different actin promoters and the promoter of elongation factor-1α. One actin promoter (Act-II) and the EF-1α(More)
Astacin-like metalloproteases are ubiquitous in the animal kingdom but their phylogenetic relationships and ancient functions within the Metazoa are unclear. We have cloned and characterized four astacin-like cDNAs from the marine hydroid Hydractinia echinata and performed a database search for related genes in the draft genome sequence of the sea anemone(More)
We studied the role of Wnt signaling in axis formation during metamorphosis and regeneration in the cnidarian Hydractinia. Activation of Wnt downstream events during metamorphosis resulted in a complete oralization of the animals and repression of aboral structures (i.e. stolons). The expression of Wnt3, Tcf and Brachyury was upregulated and became(More)
Cnidarians possess remarkable powers of regeneration, but the cellular and molecular mechanisms underlying this capability are unclear. Studying the hydrozoan Hydractinia echinata we show that a burst of stem cell proliferation occurs following decapitation, forming a blastema at the oral pole within 24 hr. This process is necessary for head regeneration.(More)