Learn More
Various selection procedures in chemostats and batch cultures were systematically tested for their efficiency to select for a multiple-stress resistance phenotype in Saccharomyces cerevisiae. To determine the relative stress resistance phenotypes, mutant populations harvested at different time points and randomly chosen clones from selected populations were(More)
Despite extensive recent reports on combinatorially selected inorganic-binding peptides and their bionanotechnological utility as synthesizers and molecular linkers, there is still only limited knowledge about the molecular mechanisms of peptide binding to solid surfaces. There is, therefore, much work that needs to be carried out in terms of both the(More)
MOTIVATION The discovery of solid-binding peptide sequences is accelerating along with their practical applications in biotechnology and materials sciences. A better understanding of the relationships between the peptide sequences and their binding affinities or specificities will enable further design of novel peptides with selected properties of interest(More)
Remarkable progress has been made to date in the discovery of material binding peptides and their utilization in nanotechnology, which has brought new challenges and opportunities. Nowadays phage display is a versatile tool, important for the selection of ligands for proteins and peptides. This combinatorial approach has also been adapted over the past(More)
Recently, phage and cell-surface display libraries have been adapted for genetically selecting short peptides for a variety of inorganic materials. Despite the enormous number of inorganic-binding peptides reported and their bionanotechnological utility as synthesizers and molecular linkers, there is still a limited understanding of molecular mechanisms of(More)
Binding kinetics of platinum-, silica-, and gold-binding peptides were investigated using a modified surface plasmon resonance spectroscopy (SPR). Platinum binding septa-peptides, quartz-binding dodecapeptides, and gold-binding 14-aa peptides were originally selected using phage or cell surface display libraries using the mineral or pure forms of these(More)
A bottom-up approach for constructing colloidal semiconductor quantum dot (QDot) nanocomposites that facilitate nonradiative Förster-type resonance energy transfer (FRET) using polyelectrolyte peptides was proposed and realized. The electrostatic interaction of these polypeptides with altering chain lengths was probed for thermodynamic, structural, and(More)
Biological and biomimetic synthesis of inorganics have been a major focus in hard tissue engineering as well as in green processing of advanced materials. Among the minerals formed by organisms, calcium phosphate mineralization is studied extensively to understand the formation of mineral-rich tissues. Herein, we report an engineered fusion protein that not(More)
Utilization of light is crucial for the life cycle of many organisms. Also, many organisms can create light by utilizing chemical energy emerged from biochemical reactions. Being the most important structural units of the organisms, proteins play a vital role in the formation of light in the form of bioluminescence. Such photoproteins have been isolated and(More)
Inspired by biological material synthesis, synthetic biomineralization peptides have been screened through a laboratory evolution using biocombinatorial techniques. In this study, using the fine examples in nature, silica binding peptides and gold binding peptides were fused together to form a hybrid peptide. We designed fusion peptides with different gold(More)