Learn More
Interest in electrospinning has recently escalated due to the ability to produce materials with nanoscale properties. Electrospun fibers have been investigated as promising tissue engineering scaffolds since they mimic the nanoscale properties of native extracellular matrix. In this review, we examine electrospinning by providing a brief description of the(More)
This study instituted a unique approach to bone tissue engineering by combining effects of mechanical stimulation in the form of fluid shear stresses and the presence of bone-like extracellular matrix (ECM) on osteodifferentiation. Rat marrow stromal cells (MSCs) harvested from bone marrow were cultured on titanium (Ti) fiber mesh discs for 12 days in a(More)
The physical and spatial architectural geometries of electrospun scaffolds are important to their application in tissue engineering strategies. In this work, poly(epsilon-caprolactone) microfiber scaffolds with average fiber diameters ranging from 2 to 10 microm were individually electrospun to determine the parameters required for reproducibly fabricating(More)
BACKGROUND Intracavitary noncompressible hemorrhage remains a significant cause of preventable death on the battlefield and in the homeland. We previously demonstrated the hemostatic efficacy of an in situ self-expanding poly(urea)urethane foam in a severe, closed-cavity, hepatoportal exsanguination model in swine. We hypothesized that treatment with, and(More)
BACKGROUND Noncompressible abdominal bleeding is a significant cause of preventable death on the battlefield and in the civilian trauma environment, with no effective therapies available at point of injury. We previously described the development of a percutaneously administered, self-expanding, poly(urea)urethane foam that improved survival in a lethal(More)
BACKGROUND Hemorrhage within an intact abdominal cavity remains a leading cause of preventable death on the battlefield. Despite this need, there is no existing closed-cavity animal model to assess new hemostatic agents for the preoperative control of intra-abdominal hemorrhage. METHODS We developed a novel, lethal liver injury model in non-coagulopathic(More)
BACKGROUND Intracavitary noncompressible hemorrhage remains a significant cause of preventable death on the battlefield. Two dynamically mixed and percutaneously injected liquids were engineered to create an in situ self-expanding polymer foam to facilitate hemostasis in massive bleeding. We hypothesized that intraperitoneal injection of the polymer could(More)
We present a strategy for the rapid, efficient, and accurate measurement of the coefficient of diffusion (D) of solutes using a commercial capillary electrophoresis (CE) instrument. This approach utilizes the classic analysis of Taylor of the dispersion of solutes pumped hydrostatically through glass capillaries. To obtain accurate values of D, we modified(More)
BACKGROUND Noncompressible abdominal hemorrhage is a significant cause of battlefield and civilian mortality. We developed a self-expanding polyurethane foam intended to provide temporary hemorrhage control and enable evacuation to a definitive surgical capability, for casualties who would otherwise die. We hypothesized that foam treatment would be(More)
BACKGROUND Noncompressible abdominal bleeding is a significant cause of preventable death on the battlefield and in the civilian setting, with no effective therapies available at point of injury. We previously reported that a self-expanding polyurethane foam significantly improved survival in a lethal hepatoportal injury model of massive venous hemorrhage.(More)