Learn More
Long-term use of conventional tillage and wheat (Triticum aestivum L.)-fallow systems in the northern Great Plains have resulted in low soil organic carbon (SOC) levels. We examined the effects of two tillage practices [conventional till (CT) and no-till (NT)], five crop rotations [continuous spring wheat (CW), spring wheat-fallow (W-F), spring wheat-lentil(More)
Little information exists about how global warming potential (GWP) is affected by management practices in agroecosystems. We evaluated the effects of irrigation, tillage, crop rotation, and N fertilization on net GWP and greenhouse gas intensity (GHGI or GWP per unit crop yield) calculated by soil respiration (GWP and GHGI) and organic C (SOC) (GWP and(More)
Soil can be degraded by several natural or human-mediated processes, including wind, water, or tillage erosion, and formation of undesirable physical, chemical, or biological properties due to industrialization or use of inappropriate farming practices. Soil degradation occurs whenever these processes supersede natural soil regeneration and, generally,(More)
Assume spatial independence of soil properties and thus use a random sampling pattern. Record GPS coordinates of each sampling location and collect samples using a core method compositing a minimum of 8 cores per depth. If soil property variability is known the number of cores for compositing can be adjusted. As a rule of thumb biological soil properties(More)
Management practices, such as tillage, crop rotation, and N fertilization, may affect net global warming potential (GWP) and greenhouse gas intensity (GHGI), but their global impact on cropland soils under different soil and climatic conditions need further evaluation. Available global data from 57 experiments and 225 treatments were evaluated for(More)
Stimulation of plant productivity caused by Agaricus fairy rings has been reported, but little is known about the effects of these fungi on soil aggregation and the microbial community structure, particularly the communities that can bind soil particles. We studied three concentric zones of Agaricus lilaceps fairy rings in Eastern Montana that stimulate(More)
Management practices may influence dryland soil N cycling. We evaluated the effects of tillage, crop rotation, and cultural practice on dryland crop biomass (stems and leaves) N, surface residue N, and soil N fractions at the 0–20 cm depth in a Williams loam from 2004 to 2008 in eastern Montana, USA. Treatments were two tillage practices (no-tillage [NT](More)
Little is known about management practices that can simultaneously improve soil and environmental quality and sustain crop yields. The effects of novel and traditional management practices that included a combination of tillage, crop rotation, and N fertilization on soil C and N, global warming potential (GWP), greenhouse gas intensity (GHGI), and malt(More)
Efforts have increased to measure nitrate losses from farmland under different management practices due to environmental and public concerns over levels of nitrate-nitrogen (NO 3-N) in surface and ground waters. This study evaluated the effect of conventional tillage (CT) and strip tillage (ST) practices and three N application rates on NO 3-N(More)
Information on the effect of long-term management on soil nutrients and chemical properties is scanty. We examined the 30-year effect of tillage frequency and cropping sequence combination on dryland soil Olsen-P, K, Ca, Mg, Na, SO4-S, and Zn concentrations, pH, electrical conductivity (EC), and cation exchange capacity (CEC) at the 0-120 cm depth and(More)