Learn More
PURPOSE To evaluate the chondrogenic potential of platelet concentrates on human subchondral mesenchymal progenitor cells (MPCs) as assessed by histomorphometric analysis of proteoglycans and type II collagen. Furthermore, the migratory and proliferative effect of platelet concentrates were assessed. METHODS Platelet-rich plasma (PRP) was prepared using(More)
OBJECTIVE The microfracture technique activates mesenchymal progenitors that enter the cartilage defect and form cartilage repair tissue. Synovial fluid (SF) has been shown to stimulate the migration of subchondral progenitors. The aim of our study was to determine the chemokine profile of SF from normal, rheumatoid arthritis (RA) and osteoarthritis (OA)(More)
Microfracture is frequently used as the first line of treatment for the repair of traumatic cartilage defects. We present the clinical and histological results 18 months to two-years after treatment in a 26-year-old male with a post-traumatic chondral defect of the medial femoral condyle managed by microfracture covered with chondrotissue, a cell-free(More)
The method of cryopreservation of embryos aged seven days, proposed for embryo transfer with cattle by Niemann (1985), was tested under production conditions on three cattle breeding farms and three experimental animal units. The number of donors was 128, and 467 intact embryos were obtained from them and were cryopreserved in semen straw. Following(More)
BACKGROUND Scaffold-assisted autologous chondrocyte implantation is a clinically effective procedure for cartilage repair, but biomechanical evaluations are still missing. PURPOSE This study was conducted to assess the clinical efficacy, including biomechanical analyses, of BioSeed-C treatment for traumatic and degenerative cartilage defects of the knee.(More)
Heart diseases are a leading cause of morbidity and mortality. Cardiac stem cells (CSC) are considered as candidates for cardiac-directed cell therapies. However, clinical translation is hampered since their isolation and expansion is complex. We describe a population of human cardiac derived adherent proliferating (CAP) cells that can be reliably and(More)
BACKGROUND Scaffold-assisted autologous chondrocyte implantation is an effective clinical procedure for cartilage repair. From the regulatory point of view, the ovine model is one of the suggested large animal models for pre-clinical studies. The aim of our study was to evaluate the in vitro re-differentiation capacity of expanded ovine chondrocytes in(More)
OBJECTIVE Repair approaches for the non-vascular meniscus are rarely developed. Recent strategies use scaffold-based techniques and inducing factors. The aim of the study was the investigation of cell recruitment and re-differentiation inducing factors for a scaffold-based meniscus repair approach. METHOD 3D cultivation of in vitro expanded human(More)
In cartilage repair, scaffold-assisted one-step approaches are used to improve the microfracture (Mfx) technique. Since the number of progenitors in Mfx is low and may further decrease with age, aim of our study was to analyze the chondrogenic potential of freeze-dried polyglycolic acid-hyaluronan (PGA-HA) implants preloaded with mesenchymal stem cells(More)
Treatment options for lesions of the avascular region of the meniscus using regenerative medicine approaches based on resorbable scaffolds are rare. Recent approaches using scaffold-based techniques for tissue regeneration known from cartilage repair may be a promising treatment option for meniscal tears. The aim of the study was the investigation of(More)