Learn More
ground truth sketch inverse sketch deep neural network Figure 1: Example results of our convolutional sketch inversion models. Our models invert face sketches to synthesize photorealistic face images. Each row shows the sketch inversion / photo synthesis pipeline that transforms a different sketch of the same face to a different image of the same face via a(More)
Converging evidence suggests that the primate ventral visual pathway encodes increasingly complex stimulus features in downstream areas. We quantitatively show that there indeed exists an explicit gradient for feature complexity in the ventral pathway of the human brain. This was achieved by mapping thousands of stimulus features of increasing complexity(More)
Encoding and decoding in functional magnetic resonance imaging has recently emerged as an area of research to noninvasively characterize the relationship between stimulus features and human brain activity. To overcome the challenge of formalizing what stimulus features should modulate single voxel responses, we introduce a general approach for making(More)
A brain computer interface (BCI) enables direct communication between a brain and a computer translating brain activity into computer commands usi ng preprocessing, feature extraction and classification operations. Feature extraction is crucial as it has a substantial effect on the classification accuracy and speed. While fractal dimension has been(More)
Recently, deep neural networks (DNNs) have been shown to provide accurate predictions of neural responses across the ventral visual pathway. We here explore whether they also provide accurate predictions of neural responses across the dorsal visual pathway, which is thought to be devoted to motion processing and action recognition. This is achieved by(More)
Better acquisition protocols and analysis techniques are making it possible to use fMRI to obtain highly detailed visualizations of brain processes. In particular we focus on the reconstruction of natural images from BOLD responses in visual cortex. We expand our linear Gaussian framework for percept decoding with Gaussian mixture models to better represent(More)
We developed task-optimized deep neural networks (DNNs) that achieved state-of-the-art performance in different evaluation scenarios for automatic music tagging. These DNNs were subsequently used to probe the neural representations of music. Representational similarity analysis revealed the existence of a representational gradient across the superior(More)
Here, we develop an audiovisual deep residual network for multimodal apparent personality trait recognition. The network is trained end-to-end for predicting the Big Five personality traits of people from their videos. That is, the network does not require any feature engineering or visual analysis such as face detection, face landmark alignment or facial(More)
Encoding models are used for predicting brain activity in response to sensory stimuli with the objective of elucidating how sensory information is represented in the brain. Encoding models typically comprise a nonlinear transformation of stimuli to features (feature model) and a linear convolution of features to responses (response model). While there has(More)
This paper reviews and discusses research advances on “explainable machine learning” in computer vision. We focus on a particular area of the “Looking at People” (LAP) thematic domain: first impressions and personality analysis. Our aim is to make the computational intelligence and computer vision communities aware of the(More)